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ABSTRACT 

A technique has been developed which allows prediction and analysis of the 

dynamic response of vehicles traversing yielding and non-yielding rough surfaces. 

Virgin terrestriof and extraterrestrial surfaces are classified according to their frequency 

and amplitude distribution. A single parameter has been defined which, when properly 

interpreted, is sufficient to completely specify their surface roughness. This classification 

determines the nature of a random input to an analog computer simulation of the vehicle 

and surface dynamic models. Parametric model analysis can then be performed with the 

output criteria specified statistically. 

In addition, deterministic inputs can be used, and a simplified linear model 

technique is presented using transfer function concepts. 
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I. INTRODUCTION 

The effects of surface roughness on the design and operation of vehicles has been in- 

vestigated for a number of years. An analytical approach to the study of these effects re- 

quires a mathematical model of the vehicle which is excited by the surface profile. Initial at- 

tempts (‘) (2) to study this problem in the automotive industry consisted of subjecting mathe- 

matical automobile models to well defined mathematical inputs such as sine waves, step 

functions, triangular waves, etc. Verification of the analysis was accomplished by construct- 

ing specific obstacles and driving instrumented automobiles over them. While this technique 

served to verify the analysis it was difficult to optimize design, or study behavior since the 

validity of the input was questionable. 

As better methods of measuring and recording actual surface profiles were developed, 

the aircraft industry became involved in analyzing the effects of runway roughness on aircraft. 

A statistical method (power spectral density) (3) for classification of runway profile was adopted 

and a number of measurements were made (4) (5) . Attempts were made to statistically analyze 

simple linear aircraft models. The problem associated with this analysis was the interpretation 

of the output. Methods have recently been developed (6) which use a deterministic runway 

profile as an input to a dynamic model. Where a specific section of profile is of interest, as 

in aircraft runway analysis, it is more meaningful to look at a deterministic input for analysis. 

This allows, not only the evaluation of the response of a particular airplane to a particular 

runway, but also the prediction of those runway sections where repair work might contribute 

to smoother dynamic performance. 

At the same time that the aircraft industry was developing the statistical approach for 

aircraft analysis, the Army became interested in this approach for studying dynamic problems 
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of military vehicle cross-country operations (7)(8 )- In this case, where no specific path of 

travel is defined, statistical classification of surface roughness appeared to be a promising 

method of attack. 

When the problem of operating surface vehicles in extraterrestrial environments is con- 

sidered, the analytical approach becomes a practical necessity. The cost and complexity 

associated with experimental testing in extraterrestrial environments precludes this approach to 

vehicular design. It thus becomes necessary to develop accurate analytical techniques which 

permit investigation of design parameters. There is, seemingly, a paradox between the two 

analytical approaches to vehicle dynamics, i.e. , deterministic versus random input functions. 

This paradox stems from the fact that for a vehicle operating in an extraterrestrial environment, 

the concern is with the encounter of a singular obstacle which may result in a catastrophic 

failure, such as vehicle roll-over. It is argued that with the statistical approach, these ob- 

stacles are smoothed, in some sense, over the surface such that an obstacle (be it a lunar 

crater or a terrestrial rock) is “lost” in the statistical definition of the surface. Conversely, 

the statistical approach appears very promising since no discrete traverse of a surface segment 

can be chosen for analytical evaluation or optimization of vehicle design. The basic premise 

behind the approach to vehicle dynamics outlined in this report is that the statistical determina- 

tion of surface roughness is a necessity for characterizing virgin terrestrial or extraterrestrial 

surfaces. This approach not only allows meaningful investigation of the probability of en- 

countering a singular obstacle, but it is the only rational and accurate way of determining 

this probability. 

This report is based on an application of existing statistical techniques. An approach 

is outlined which, when expanded, should provide a means for optimization of vehicle design 

and study of the behavior of vehicles traversing rough surfaces. To this end four objectives 

were established at the onset of this research study. 
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These objectives are: 

I. To define surface roughness in a concise and meaningful fashion with a 

minimum number of parameters and in a form usable for vehicle analysis. 

2. To include the dynamics of yielding surfaces in vehicle model analysis. 

3. To analyze non-linear systems for both vehicle and surface dynamic 

models. 

4. To develop output criteria for vehicle optimization determined by the 

probability of exceeding design limits. 

One method of meeting all of these objectives is to specify the surface roughness statis- 

tically, such that a representative time trace can be generated for input to an analog computer 

simulation of the vehicle. Figure I shows a block diagram of the conceptual approach. 

~ Amplitude Amplitude 

and and 

Frequency Frequency 

Shaping Shaping t 

Vehicle Vehicle 

- Model w Model 

Limit 

t Prediction 

Interaction Interaction 

I I I 

Figure 1 BLOCK DIAGRAM FOR NON-LINEAR SYSTEM ANALYSIS 

3 



Il. SURFACE ROUGHNESS 

After reviewing the existing methods of classifying surface roughness, it was concluded 

that the power spectral density (variance density spectrum) offered the most promise for the 

present application. A number of investigators have observed that the P.S.D. of natural surfaces 

and most man-made surfaces (aircraft runways and highways) can be expressed by Equation I. 

pd (n) q c’ n 
-N 

(1) 

Where Pd(fI) is the P. S.D. of the surface displacement (profile height) with units of meters2/ 

cycle/meter, JIis a spatial frequency in cycles/meter and C and N are constants for any 

given spectral estimate. Figure 2 shows a number of published P.S.D. ‘s. Table I lists a des- 

cription of these profiles and computed values of C’ and N. N is a dimensionless constant and 

C’ is an empirical constant whose dimensions vary with the value of N. 

Table 1 shows that N is approximately 2.0 for both natural and man-made surfaces. 

Man-made surfaces can be artificially constructed to give any value of N. &n’s influence 

may accentuate some frequency component making Equation I invalid for some surfaces (wash- 

board roads, plowed fields, expansion joints in concrete pavements, etc.). The P.S. D. ‘s from 

surfaces I2 and I3 in Figure 2 and the results of lunar surface analysis in Appendix A indicate 

that natural surfaces have no favored or predominant frequency and that the value of N in Equa- 

tion I is approximately 2 for these surfaces. This gives Equation 2 for the P.S. D. of virgin 

terrestrial or extraterrestrial surfaces. 

Pd (II> = cn-2 (2) 
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Table I _ VALUES OF C’ AND N FOR P.S.D.‘s OF FIGURE 2 

P.S.D. 
Number Description Reference N C’ C” c 

III 

I 

2 

3 

4 

5 

6 

7 

8 

9 

IO 

II 

12 

13 

Runway ((r= .r316) 

Runway 3 

Runway I 

Runway 35 

Smooth Highway 

Runway (U q .250) 

Runway 12 

Runway 4(20i)‘/sec) 

Smooth Runway 

Highway with Gravel 

Rough Runway 

Lunar Profile 

Aberdeen 

NASA-TND-5 IO 

NACA-TN-4303 

NACA-TN-4303 

NACA-TN-3305 

REF. 7 

NASA-TND-5 IO 

NACA-TN-3305 

AGARD-REP 119 

NACA-TN-3484 

REF. 7 

NACA-TN-3484 

Appendix A 

REF. 8 

3.8 4.3 x IO-” 1.0 x IO-l2 

2.0 7.0 x 10-8 

2.6 1.9 x lO-8 

2. I 2.7 x lO-7 

2. I 4.8 x lO-7 

1.9 6.4 x lO-7 

2.0 8.. 2 x lO-7 

4. I 2. I x lo-8 

2. I 2.4 x lO-6 

2.1 4.4 x 10-6 

2.1 8.1 x lO-6 

2.0 3.6 x lO-4 

2.0 4.8 x lO-4 

6. I x lO-6 

9.6 x lO-8 

1.6 x lO-5 

2.6 x lO-5 

8.7 x lO-5 

6.0 x lO-5 

9.1 x 10-11 

1.3 x 10-4 

2.4 x lO-4 

4.3 x 10-4 

3.6 x lO-2 

4.8 x 1O-2 

I.6 x IO+ 

2.2 x 10-7 

2.9 x lO-8 

7.7 x lo-7 

I. 2 x lo-6 

2.3 x 10-6 

2.5 x lO-6 

5.3 x lo-9 

6.6 x 10-6 

I.1 x IO -5 

2.3 x lO-5 

1.2 x lo-3 

1.6 x lO-3 

NOTE; C’ q Value Computed for Pd(n-) in m2/cycle/m 

C” = Value Computed for Pd(.n-) in cm2/cycle/cm 

C 
III 

q Value Computed for Pd(@) in ft2/cycle/ft 
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The constant C indicates that no predominant frequency is expected. This constant has the 

dimension of length and is a measure of surface roughness. The exponent of -2 predicts that 

the amplitude of a surface undulation is directly proportional to its wave length. 

2. I Slope Distribution. 

It is of interest to compare Equation 2 with other published methods of surface classifica- 

tion. The U. S. Geological Survey has been processing various lunar photographs in an attempt 

to map and classify sections of the lunar surface. These photographs range all the way from low 

resolution earth based photographs to the highest resolution Ranger photographs. The surface 

slope at numerous points has been measured by optically scanning each photograph and account- 

ing for changes in surface reflectivity. Since resolution varies considerably between photographs 

the base length over which the slope is measured covers several orders of magnitude. 

10 

Ranger VII, Pr, -979 

1.0 _ ‘<~A~ig~s~~~~ ‘:i:ris (10 km) 

Z 

0.1 - 
l - Regional Maria 

Slopes (500 km) 

.Ol I I I I I I I 

10-l loo 10’ lo2 lo3 104. lo5 lo6 

Slope Length in Meters 

Figure 3 MEDIAN SLOPE vs SLOPE LENGTH 

Figure 3 is a U.S.G.S. plot of the median slopes versus base length. The four data points, each 

measured from a different photograph, fall on a straight line in this log-log plot. This relation- 

ship is expressed by Equation 3. S is the median slope in degrees, K is a constant and AL is 
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I- 

S q .K (AL) 
-l/2 

(3) 

the base length. Since S is less than IO0 in every case the height of rise Y over the segment 

A L is approximately: 

Y (~3 SALCC(AL) w 
(4) 

The wave length is proportional to AL and inversely proportional ton., the spatial frequency. 

Noting this fact and also noting that Pd (n.) a: Y2/n yields: 

p, tn> Oc Y2 /n. a3 n. -2 (5) 

which agrees with the form of Equation 2. Thus, Equation 2 appears to be applicable over a 

wide range of spatial frequency covering several orders of magnitude. 

2.2 Curvature 

The Bendix Systems Division has proposed a method of lunar surface classification using 

“curvature”. (9) This is essentially an adaptation of a method used by the metal-working in- 

dustry for assessing the smoothness of contoured surfaces. For three elevation points, or heights, 

the perpendicular height A H of the center point above the line joining the two outermost points 

is computed for various base lengths. The base length A L is the horizontal distance between the 

two outside points. To demonstrate this method the authors of Reference (9) used a 65 x 65 matrix 

of elevation points (points spaced 1.25 feet apart) from an 80 x 80 foot area of the Bonito Lava 

Flow. AA L of 2.5 feet (3 data points) was used to compute a A H for every possible combina- 

tion. A standard deviation for was then computed. The process was repeated with 

AL= 5 ft. (5 data points ignoring the 2nd and 4th points) to arrive at a new value of the standard 

deviation. This process was continued until A L of 80 ft (65 data points) was reached. A log-log 
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I - 

plot of the standard’deviation u of A H 

(E?- 

versus AL is shown in Figure 4. The authors 

.lOO 

= .OlO 

.OOl 
1 10 100 

AL 

Figure 4 Plot of ~-versus AL from ref. 9 

arrived at the formula 

0-Z K(A L)” (6) 

where the two numerical factors K and n were said to “uniquely describe a particular surface. I’ 

The values obtained for these constants were K q 0.412 and n = - 1.449. Equation 6 can be re- 

written in the form of Equation 7 by assuming n to be - 1.5 and noting that o- is a measure of 

AH 

(AU2 . AH 
02 (AL) 

-1.5 

(AU2 

Noting that AH is, in some fashion, proportional to profile height and AL is proportional to 

the wave length and inversely proportional to spatial frequency.n., Equation 7 becomes: 

Yn.2 oc n-l-5 

Squaring both sides of Equation 8 and dividing byn5 yields: 

P, ( n. ) Q: Y2/n. oc .nwm2 

Equation 9 is identical with Equation 5 and again agrees with the form of Equation 2. 
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2.3 Power Spectral Density 

The power spectral density is a second moment or variance density spectrum. The concept 

of variance is important since variance is additive and provides the only meaningful method of 

dividing a random function into its frequency components. In order to classify surface profiles 

using P.S. D. techniques it is essential that the profile record be a sample function from a 

stationary random process. Stationarity implies that the statistical properties of the profile 

height do not change with position. While this is not strictly true for the surface in question, 

it is customary to assume quasi-stationarity ond estimate the P.S.D. from finite samples of the 

surface profile. This estimated P.S. D. allows a reasonably accurate measurement of the fre- 

quency content of a particular surface and thus is useful for surface classification. 

If the surface profile is measured as digitally sampled data points over a finite traverse, 

then numerical methods can be used to arrive at an estimate of the P.S. D. Appendix A gives 

a complete development of the concepts necessary for P.S. D. estimates from finite sampies to- 

gether with processing of lunar data and a computer program for P. S. D. estimates from Fourier 

series coefficients. 

A discussion of the interpretation of P.S. D. and its relationship to the Fourier series coef- 

ficients is offered by the author in reference (IO). 

2.4 Space Domain Smoothing 

Since Equation 2 predicts that the amplitude of the surface profile varies proportionately with 

the wave length, it is difficult to separate the concept of non-stationarity from the probability 

of encountering a wave length of the order of, or longer than, the data sample. In order to cope 

with this problem several investigators have developed methods of removing “non-stationary” trends 

from the data. This problem resolves to one of separating an observed elevation profile into two 
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sub-series, one containing only long wave lengths (the trend), and the other containing only 

components of shorter wave length (detrended data). It has been argued by two investigators (8 >( 11) , 

that the most realistic filter appears to be based on a linear moving average. The author of Ref- 

erence ( I I ) noted: “While the method has previously been used to filter out non-stationary trends 

from other types of data, the theoretical implications of the distortions resulting in the filtered 

profile are not clearly understood. ‘I It can be shown that, while this linear detrending attenuates 

the lower frequencies with a period of the order of the average, it does this at the expense of 

altering or contaminating the data in the range of interest. 

In order to cope with this problem, an exponentially weighted average has been developed 

for detrending the dato. This exponentially weighted average appears similar to the effect derived 

from an electrical high pass filter (12) . When the signal is available in analog fashion, it is 

necessary to weight only the past history of the signal and compute a one-sided exponential 

average. This results in the characteristic phase shift associated with analog filters. When the 

data is available in digital form it is possible to calculate the exponentially weighted average 

in both the past ond the future. This two sided exponentially weighted average is a 6 db per ,, 

octave filter with zero phase shift. Equation IO expresses the mathematical process of computing 

this exponential detrending of the data. 

a=co 

Fd (x) q F (x) - 1 [F (x •C a) -C F (x - a )] e- 
a/X 

da 
2x 

(10) 
=o 

Where Fd(x) is the detrended filtered) function, F(x) is the original function and A is the ex- 

ponential weighting constant (time constant in the time domain). Appendix A develops the 

numerical method for computing this detrending which was used to process Ranger data and gives 

the computer program. In this case the numerical integration was performed out to 3 1 . 
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The necessity for smoothing the data in the time domain depends, to a large extent, on 

the nature of the data. No detrending is necessary if the function is stationary and the range 

of sample data is much larger than any expected wave length. In the case of profile measure- 

ments it has been predicted here that the amplitude varies directly with the wave length, hence 

detrending is a necessity to achieve on accurate estimate of the P.S.D. While it might appear, 

at first glance, that the “trend” would only alter the components of long wave length, it actually 

will alter all components. If the trend is significant it might easily obscure the real dato of in- 

terest. Figure 5 shows both the undetrended and the detrended P.S.D. calculated for the Lunar 

surface from Data Set 4 (See Figure A-7) in Appendix A. This data has a substantial linear trend 

and the effect of this trend is to raise the estimate of the surface roughness at each frequency. 

An estimate of the P.S.D. for the finite sample of the trend alone is of the form predicted by 

Equation 2. A further discussion of the contamination of data trends is offered in Appendix A. 

2.5 Frequency Domain Smoothing 

In general, it is also necessary to smooth the estimate of the P.S. D. in the frequency 

domain. This necessity is due to the fact that on uncertainty exists between the estimate of 

the magnitude and the frequency resolution based on the length of the data sample. Two types 

of spectral windows are employed in Appendix A; one based on a linear average and the other 

on an exponentially weighted average. The concept of spectral windows is well developed in 

the literature(13) and no further discussion will be undertaken here except to moke two ob- 

servations. 

(1 ) The concept of an exponentially weighted average for smoothing 

in the frequency domain appears promising and arguments as to 

the time domain effect of this spectral window can be made which 

are essentially reciprocals of the arguments made in Section 2.4. 
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(2) Assuming a spectral shape, as in Equation 2, and forcing the data to fit 

this shape, results in the ultimate in frequency domain smoothing. Thus, 

for the P.S.D., if the frequency content is fixed, on accurate estimate 

of the magnitude can be obtained from rather crude data. 

2.6 Variance 

In order to expand on the second observation above, it is of interest to explore the con- 

cept of variance. Variance is a measure of the deviation from the mean and, in the case of 

a surface profile, is a measure of roughness. The variance is also the integral on frequency of 

the P.S.D. Thus, it would appear from Equation 2, that the variance of the surface profile 

would be: 
OJ 

2 
Varc o- c 

i 

Cfl.-2 dn (I’) 

The integral of Equation I I does not exist however, due to the singularity at zero frequency. 

This is another way of looking at the need for space domain smoothing. It was noted in Section 

2.4 that the exponentially weighted average detrending is a 6 db per octave filter with zero 

phase shift. The significance of this technique is that the exponential character allows a rigorous 

frequency domain interpretation of the space domain filtering. Substituting the square of the 

filter transfer function (the power ratio) into Equation I I gives Equation 12, which can be inte- 

grated (See Appendix A). 

Var = o 
2 

= (12) 

Equation 12 shows the relationship between the variance of the data, detrended with filter con- 

stant x , and the value of C. This relationship is important for two reasons. 

14 



(1) It allows a verification of the surface profile frequency content predicted 

by Equation 2. That is, it is possible to detrend data with different values 

of A and compute variance. If the computed value of C is invariant with 

changes in x then Equation 2 is valid. Table 2 gives such a comparison for 

two different x ‘s using the Lunar data of Figure 5. This method can also 

be used to establish the maximum usable value of x since the value of C will 

be substantially increased by effective trends. 

(2) If Equation 2 is a valid description of the surface, it is possible to compute 

C and thus the P.S. D. of a surface profile from only the variance of the de- 

trended data. In the case where crude data is available this estimate is ex- 

pected to be more rigorous than the actual P.S.D. calculation. 

Table 2 COMPUTATION OF C FOR LUNAR DATA 

x Variance 

(meters) (meters2) (meye rs) 

5 6. ‘5 x ‘0 -3 2.5 x 1O-4 

I 1.29 x ‘0 -3 2.6 x lO-4 

2.7 Variance of Slope Calculation 

To show the relationship between the slope calculation of Section 2. I and the value of C, 

consider the following argument. The height of a sinusoid is given by: 

Y= sin (2 Tr.II x), (‘3) 
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The height difference AY over an increment A L is: 

AY= sin [2T?ll.(A L + x)] - sin (2flf.I.x) (‘4) 

The variance of AY over the entire range of the sine wave is: 

I 

f 

2l-r 

=- 
2n [ 

2 
sin (2n.n(AL + x)) - sin (2l”f n.x) 1 d (2 nn.X) 

0 

= 2 sin2 (7mAL) (‘5) 

Equation 15 is the variance of the height change for a fixed base length AL and a unit ampli- 

tude sine wave. Slope variance is: 

Slope Var = Var (AU) = 2sin2(71fl.AL) 

(AL) 2 (A LJ2 

In order to ‘convert Equation 16 to the P. S. D. form for a surface profile, Equation 2 is 

utilized to give the “amplitude” of the sine wave. This yields: 

(‘6) 

(‘7) 

A factor of two has been included in Equation 17 to account for the convention that the variance 

is the integral of the P.S. D. on frequency from 0 to 00. Equation I7 gives the formula for the 

variance of the slope due to the contribution of the surface roughness in a unit frequency range 

about n. for a fixed AL. 

For a true differentiation of the profile A L-t0 and Equation I7 becomes: 

(‘8) 
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Noting that the P.S.D. of the derivative of a function is equal to (2 IT n)’ times the P.S.D. 

of the function, Equation I8 is consistent with Equation 2 and predicts that the slope P.S.D. 

is “white” or independent of frequency. 

The effect of the “artificial” differentiation by using a fixed AL can be seen by compar- 

ing Equation 17 with Equation 18. At zero frequency the two are identical but at any frequency 

above zero the artificial differentiation gives anattenuation as shown in Figure 6. The variance 

of the fixed A L slope calculation can be computed by integrating Equation 17 over frequency. 

2 2 

o- - sin(TTfLAL) 
s - TT n.AL 1 AL 

The standard deviation of the slope is then: 

us q l7y: )‘” 

(‘9) 

(20) 

Many times slope is meosured in degrees (see Section 2. I ). For practical values of AL the 

angle is less than IO’, and the tangent of the angle is approximately equal to the angle. Thus: 

‘80 =s a; ( in degrees) = - = 
7-r 

(2’ 1 

Equation 21 allows a calculation of the value of C from slope distribution data. While detrend- 

ing is important in this case it is not as crucial as in the profile determination since the singularity 

at n. I 0 no longer exists. Detrending should be accomplished in the original data before con- 

version to slope information, but this is difficult if the data is originally in slope form. Direct 

substitution of a slope variance (from USGS data or similar data) will yield only an approximate 

value of C and this approximation is dependent on the trend of the data sample. 
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2.8 Spatial and Temporal Frequencies 

For vehicle model analysis, temporal frequencies are usually of interest since vehicle 

resonances are functions of time. The transformation between spatial frequency (cycles/meter) 

and temporal frequency (hertz or cps) is that of the speed of a vehicle over the surface as given 

by expressions 22. 

f(cycles/sec) z.fl. (cycles/meter) V (meters/set ) 

P(f) (meters 2/cycles/set ) = P(I).) (meters 2/cycIes/meter) f (set/meter) (22 ) 

Substituting these relationships in Equation 2 yields: 

P, (f) = VCf-2 

Similarly substituting expressions 22 into Equation 18 yields: 

Pv(f)=4n2 vc 

(23) 

(24) 

Equation 24 is an important concept since it states that the vertical velocity input P.S.D. to 

a vehicle traversing the surface is white. 

Equations 23 and 24 show an interesting relationship with vehicle speed. The level of 

the input to the vehicle is directly proportional to vehicle speed. If the vehicle system is linear 

it is predicted that the vibrational activity of the vehicle will increase in direct proportion to 

the speed. 

2.9 Amplitude Probability Distribution 

The P.S.D. defines the frequency content of a random stationary variable F(x). In 

addition to the frequency content the amplitude distribution must be defined to completely 

specify the variable in a statistical fashion. The amplitude probability distribution (A. P. D.) 
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is the probability that the function F(x) will exceed the level Y. If a finite sample of a con- 

tinuous random stationary function F(x) is available, an estimate of the A.P. D. is the percent 

of the horizontal distance that the function is above the level Y as given by Equation 25. 

i 

x 
A.P.D. (Y) = + 6(F (4 >y> dx 

0 

Where g(F (x) > Y) is defined by the relation: 

&(F (x) > Y) = I if F (x) 2 Y 

and 

b (F (x) > Y) = 0 if F (x) < Y 

(25) 

If the data is available as digital points, an estimate of the A. P. D. can be determined by count- 

ing the number of points above the given level and determining the ratio of this number to the 

total number of available points as a function of the level Y. A digital computer program written 

to perform this estimation is presented in Appendix A. The A. P. D. function has the form shown 

in Figure 7. The derivative of this function is the amplitude probability density function, also 

shown in Figure 7, which is the familiar bell-shaped or normal curve for a Gaussian distribution. 

The amplitude probability density function is a measure of the probability that the level of the 

function is in the increment aY about Y. 

Figure 8 shows three examples of amplitude probability density plots of the slope distri- 

butlon for the lunar surface from the United States Geological Survey. Appendix A includes a 

number of A. P. D. plots calculated from digital traces from Ranger VIII photogratis. It is noted 

that in every case the Gaussian distribution is predicted within the statistical reliability of the 

data available. 
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If a process is Gaussian with zero mean, the standard deviation is sufficient to completely 

define the A. P. D. and thus the probability of exceeding any given level. As was noted previously 

the variance (and thus its square root, the standard deviation) is undefined for an undetrended 

surface profile as predicted by Equation 2. If the profile is detrended, the variance is directly 

proportional to the exponential parameter x as given by Equation 12, and the standard deviation 

is given by the relationship. l/2 

u ;(cy X)’ (27) 

Thus, the parameter C completely specifies the P.S.D. of the surface profile and also 

specifies the A. P. D. of the detrended profile as a function of the exponential parameter x . 

This detrending will, of course, lower the estimate of the probability at each level; but if the 

data sample is long enough the significant portion determined by vehicle dynamics character- 

istics can be maintained. 

2. IO Summary of Surface Roughness 

It has been shown that the power spectral densities of virgin terrestrial and extraterrestrial 

surfaces have a constant shape (as depicted by Equation 2). This shape predicts that no pre- 

dominant frequency component exists and that the amplitude of the various frequency compon- 

ents is proportional to their wave length. Available information also shows that the amplitude 

probability distribution of surface roughness is Gaussian. lt is concluded that discrepancies, 

from either of these well behaved functions, which are estimated from finite data samples are 

due to either the trend effects of the available sample or artifacts in the particular surface which 

are non-representative and therefore should be ignored in a statistical surface description. It is, 

therefore, suggested that a single parameter (C from Equation 2) completely specifies the rcugh- 

ness of representative profile traces in a statistical sense. While available information does not 
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allow accurate measures of either the amplitude probability distribution or the power spectral 

density, it does allow rather accurate measures of the properly detrended variance (and thus 

C via Equation 12). Using the above arguments, both the P.S.D. and the A.P.D. can be 

estimated from a knowledge of the variance. This surface model is used to characterize random 

inputs for prediction and analysis of vehicle motions. 
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Ill. YIELDING SURFACE DYNAMIC MODEL 

A considerable amount of work has been done in soft-soil mechanics, but most of this 

activity has been directed toward the prediction of vehicles under equilibrium conditions. 

Methods exist to predict drawbar pull, power requirements, sinkage, etc., but there is no 

comprehensive theory for dynamic wheel-soil interaction. In order to explore this area, a 

simple dynamic soil model has been developed. The details of the soil model and its relation- 

ship with existing soft-soil mechanics is discussed in Appendix 6. The purpose of this section 

is to briefly define the soft-soil model, to show a method of incorporating the influence of 

vehicle speed over the surface, and to give an analog computer network capable of simulating 

wheel-soil interaction. 

3. I Soil Model 

It is shown in Appendix 6 that a mass-spring-damper system with a highly non-linear 

spring rate is a reasonable mode! for vertical soil reaction to loading of a fixed area flat plate. 

This model is represented by the schematic of Figure 9 and has the form of Equation 28. 

Figure 9 SOIL MODEL 
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. . 
meZ + C,Z + jJ(Z,Zmax)Z = FV (28 ) 

The effective mass (me) represents the inertia 

ing area. From elastic theory this effective mass is: 

. 3/2 
me = CT 

4’ +, ’ 

effect of the soil in proximity of the load- 

(29 ) 

C, has the form of a linear viscous damping coefficient and represents the energy dissipa- 

tion due to radiation damping (pressure wave propagation in a semi-infinite medium) from elastic 

theory. 

$Czt zmax) is the spring rate which is a function of the sinkage Z and the maximum 

penetration Z,,,. If Z <Z 
max 

thenJI(Z, Z max) is the elastic recovery rate k, given by 

B(Z, z max) for Z <Zmax = :EF = k, 

(30 ) 

(31) 

In Equations 29, 30 and 31: 

A= area of wheel footprint 

4- 
Soil mass density (See Table B-5) 

1) = Poisons Ratio for Soil (See Table B-4) 

E = Young’s Modulus for Soil (See Table B-3) 

c 1 and b, are constants depending on d (See Table B-2) 

C is a constant depending on A (See Table B- 1) 

If z = z,,, (consolidation), 9 (Z, Zmax) is a non-linear rate derived from standard plate penetro- 

meter measurements of sinkage versus pressure. Bekker Equations (19) , Assur Equations (22) or 

similar equilibrium relationships can be used for definition of this functional relationship (See 

Appendix B ). 
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3.2 Analog Computer Circuit 

An analog computer network which simulates soil behavior as characterized by Equation 

28, is shown in Figure IO. 

F.G.# 2 

Figure IO ANALOG COMPUTER NETWORK FOR SOIL MODEL 

Amplifiers 1, 2 and 3 and function generator No. I form a feedback loop which represents 

the effect of initial soil loading (consolidation). Function generator No. I is programmed to 

provide the non-linear pressure sinkage curve divided by the effective soil mass. The damping 

coefficient around amplifier 1 is the linear damping constant &/me. Amplifiers 4 and 5 and 

function generator No. 2 form a compensation circuit which becomes active only when the soil 

penetration is less than the maximum penetration. Amplifier 4 has one microfared capacitive 

input and feedback. It acts OS a summing amplifier since the input and feedback impedances 

are equal, but it has the udditional capacity of storing. The diode in front of this amplifier cuts 

off the signal at any time the stored value of maximum penetration is less than the actual value 

of penetration at that time. The maximum penetration is then subtracted from the actual 

penetration in amplifier 5. If this difference is zero (initial loading) there is no input to the 
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circuit through function generator 2. If this difference is less than zero, function generator 2 

is programmed to add the proper spring rate such that the sum of the outputs of the two function 

generators gives the linear spring constant k, divided by me. The potentiometer between amplifiers 

4 and 5 is used only to compensate for the non-zero cut-off point of the diode and is not necessary 

if the computer used has a hard limiter. Using function generators for the non-linear functions, 

it is possible to duplicate any realistic curve both for initial loading of the soil and for the re- 

covery phase. 

In order to simulate the effect of traversing the surface at a constant velocity V,, it is 

necessary to change the characteristics of amplifier 4 in Figure IO. This amplifier is essentially 

the memory circuit for maximum penetration. One method of simulating the effect of a wheel 

traversing the surface is to give amplifier 4 a “poor memory”. The memory deterioration is a 

function of the time it takes to replace the wheel contact area. If the wheel loading were con- 

stant there would be no need to compensate for speed effects on the vertical motion since a con- 

stant sinkage, i.e., maximum penetration, would be maintained independent of horizontal 

position for a homogeneous soil. A dynamic loading due to surface profile effects on the soil and 

vehicle, however, requires a recovery of the maximum penetration as new soil is encountered. In 

order to investigate this phenomenon consider the two idealized wheel models (a) and (b) in Fig- 

ure I I. Model (a) i s a rigid circular wheel of radius R which encounters a bump of 

In this representation the path of the wheel center is an arc of a circle of radius R. 

of the bump encounter is: (See Reference 14). 

l/2 

t 

height H. 

The duration 

(32 ) 

Thus the duration of the bump encounter is a function of the height of the bump H which is not very 

practical for a random input. It does suggest however that the radius R is a reasonable estimate of 
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the contact length. The other extreme, model (b) is an idealized enveloping wheel where the 

height of the hub is directly proportional to the percent of the contact length that has encountered 

the bump. Assuming that the contact length is equal to the radius this gives the bump duration, 

independent of bump height, as: 

t R =- 
VX 

(33 ) 

A more realistic compromise (15) between these two idealized extremes is the exponential function 

shown in the graph of Figure I I. Using this exponential function as the memory deterioration 

gives the convolution integral of Equation 34. This is the instantaneous maximum penetration 

under a moving wheel, which is a function of time, vehicle speed and wheel radius as well as 

the past history of penetration. 

2 Vx 
R K-t) 

Z 
2vx t 

max (t, V,,R) = - 

/ 

Z (73 e dr (34) 
R 

-00 

In order to simulate this effect in the analog computer circuit, the capacitors on both 

the input and feedback of amplifier 4 in Figure IO have been replaced by an R-C network having 

a time constant equal to 2 V,/R. This maintains the inversion characteristic of amplifier 4 when 

z q zmax, since the input and feedback impedances are still equal, but has the effect of giving 

the memory circuit for maximum soil penetration an exponential decay such that new soil is always 

being encountered. 

3.3 Surface Vehicle Interaction 

It will be assumed, for the purpose of argument, that the lower element representing a 

vehicle wheel is a mass which might be considered the rim mass of a flexible steel wheel. Figure I2 
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shows a representation of this mass above the soil model of Figure 9. 

-Vehicle Motion 

Wheel Compliance 

y -Rim Mass 

Soil Model 

Flgure I2 WHEEL- SOIL INTERACTION MODEL 

The equations of motion describing this system are givey by: 

. . 
Rim Mass m Y = - C(i - iv, - K ( Y - Yv) + Fv 

. . . 
Surface me Ys = - C, Y, - $ (Z, Z,,,) Ys - Fv 

(35 ) 

(36) 

where 

F v = w if Y < Ys + Y. 

F V q 0 if Y2 Ys + Y. 

The random surface profile Y, determined by the statistical classification of Section II, is inter- 

posed between the rim mass and the effective soil mass in such a fashion that the wheel rim cannot 

penetrate the deformed surface profile. The wheel however, can leave the surface resulting in 

surface-vehicle separation. This effect is simulated by a high gain amplifier with a diode in the 

feedback as shown in Figure 13. The output of the high gain amplifier is proportional to the force 

Fv acting on the vehicle model in the upward direction and the surface model in the downward 

direction. 
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3.4 Effect on Following In-Line Wheels 

In order to account for the effect of a preceding wheel on a following in-line wheel, it 

is necessary to record two functions and time delay these for input to the following wheel. The 

first function is the surface profile which must be delayed and fed into the following in-line 

wheel-soil model. The second is the effect of the maximum surface penetration of the preceding 

wheel as an instantaneous value. This will be used to set the memory circuit of the following 

wheel to a present maximum penetration. The following wheel then will encounter the stiff 

spring constant kS until such time that it penetrates below the maximum penetration of the preceding 

wheel. In this case the circuit will act as before and the non-linear initial loading function will 

come into effect. Actually the profile that the rear wheel sees is not the same profile that the 

front wheel has seen, but it is this profile altered by the dynamic effects of the preceding wheel. 

In order to account for this phenomenon the maximum instantaneous penetration of the front wheel 

is added to the surface profile as shown in Figure 13. In this way the following wheel sees a new 

profile dictated by the difference between the initial profile to the preceding wheel and the maxi- 

mum penetration at that point. This allows for smoothing effects on the profile roughness due to 

the traverse of the preceding wheel. This circuit may be duplicated n times to simulate n in-line 

following wheels where the input to each wheel is taken from the wheel immediately preceding 

the one in question. 
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IV. VEHICLE MODEL ANALYSIS 

The purpose of this study is to develop techniques which can be employed in the analysis 

of vehicle motion once a model has been specified, rather than to analyze any specific vehicle 

mode I. To this end, Appendix C outlines the traditional methods for a lumped parameter vehicle 

representation and defines coordinate systems and transformation of coordinates. A general n- 

wheeled rigid body model is developed in Appendix C together with the analog computer net- 

work necessary for its simulation. 

In order to implement and demonstrate the methods of analysis outlined below, a simple 

four wheeled vehicle model was chosen which is presented in Appendix C. Appendix D presents 

a frequency domain analysis of this model using transfer functions for a linear version and Ap- 

pendix E presents a non-linear version analyzed in the time domain through analog computer 

simulation. 

4. I Frequency Domain Approach 

A linear vehicle model is necessary to analyze vehicle motions using transfer function 

concepts in the frequency domain. The linear assumption necessitates a non-yielding surface 

(or at most, a linear yielding surface) and a vehicle speed below that which would cause surface- 

vehicle separation. While this approach places rather severe restrictions on model analysis, it 

does allow a convenient solution which yields a good deal of insight into vehicle behavior. 

This output P.S.D. for a linear system with one input is given (16) by: 

PO (a,) = I T(U) I2 Pi (w) 

That is, the output P.S. D. PO ( GI ) is related to the input P.S. D. Pi (w) through the square of 

the transfer function for a linear system. The phase information in the transfer function has thus 
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been ignored and only a “real” number function exists which represents the square of the magni- 

tude amplification as a function of frequency, (i.e., the product of the transfer function and its 

complex conjugate). 

If more than one random input is imposed on the linear system then the response P.S .D. 

Pa, (w) at point a in the system for n inputs is given by: 
(7, to) 

Paa(w)=j 5T.i T,*k Pik ( i u) (38 ) 

‘71 k=l I 

.th 
* 

where T . 
al 

is the transfer function between the t- input and the output at a, T . is the complex 
al 

conjugate of Tai and Pik (iu) is the appropriate cross-spectral density. The cross-spectral density 

is a function which shows relationship between two functions in the frequency domain (see Ap- 

pendix A). If the two functions are identical it becomes the usual P.S.0. which measures the 

variance of the function as a function of frequency. In general, however, if the functions are 

related, but not identical, it has both a real and an imaginary component. The real component 

(co-spectral density) measures the covariance of the “in phase” relationship of the functions OS 

a function of frequency and the imaginary component (quadrature spectral density) measures the 

“out of phase” covariance. lt should be noted that Pik and Pki are complex coni ugates. If 

the functions in question are independent random functions then the cross-spectral density is 

zero. 

Thus the phase relationships have been ignored in going to the random input approach, 

but the phase between inputs (wheels of the vehicle) cannot be ignored. If a certain phase pre- 

dominately exists this will influence the motion. For example, if the front and rear wheels are 

predominately out of phase the pitch motion of the vehicle will be excited to a greater extent 

than the bounce motion. 
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4. I. I Input Considerations 

The P.S.D. of the slope input for a vehicle model analysis will now be chosen as the 

representative equation for an extraterrestrial surface as given by Equation I8 and reproduced 

below: 

Ps (n) = 4?T2 c (39 > 

where C is the constant from Equation 2 which is a measure of surface roughness. The auto- 

covariance of an ideal white function (constant P.S.D. of Equation 38) can be defined in terms 

of the Dirac delta function by the following argument. 

JJ (a) = 4f12 C S(a) (40 ) 

f 

co 

P, (Il.) = 4n2C6(a)e-i2rrnada q 47T2 c (41) 

J- a, 

Equation 39 states that the surface roughness correlates with itself only with zero space difference. 

Two parallel traces across the surface (inputs to left and right side of the vehicle) would therefore 

have no correlation and a zero cross-spectral density. (Appendix A shows an attempt to estimate 

the cross-spectral density between two parallel traces spaced approximately a vehicle tread width 

apart from available information of the lunar surface. ) It can, therefore, be assumed for constant 

velocity straight line travel, that the inputs to the left and right sides of the vehicle are separate 

members of an ergodic set having the P.S.D. given by Equation 39. 

For following in-line wheels, however, the situation is different. The same function acts 

as an input to the wheels with only a spatial difference (the distance between wheels d). Thus, 

with a space lag d the cross covariance of the two input functions is a Dirac delta function or: 

$1, ,)(a) q drr2 c &(a -d) (42 ) 
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/ 

CD 

or C.S.D. z 4f12C&(a-d)e-i251nada 

/ -co (43 1 

= 4T2c e-i277nd = 4K2c[cos27T.lld- i sin 2 n.fid 1 
4.1.2 Vehicle Consideration 

Differential equations of motion are written for each degree of freedom of the linear 

model (See Appendix C). These equations are transformed (via Fourier Transform) to complex 

variable algebraic equations for frequency domain calculations. If more than 3 or 4 degrees 

of freedom are considered, it is necessary to employ a digital computer to obtain the appropriate 

transfer functions in numeric form. These transfer functions can be tabulated to give the magnitude 

and phase relationship between each input (wheel) and each output of interest (See Appendix 0. ) 

The transfer function can .be combined via Equation 38 by the arguments of Section 4. I. I 

to give an output velocity P.S.D. at each point of interest in the vehicle. In the temporal fre- 

quency domain (cps or hertz) this yields Equation 44 for an n-wheeled vehicle. 

n 

P, (f) at point a q 47r 2 C V, 

lx 
I Tai I2 

i= I 
(44) 

i- I 

+& 

cx 

dik 
2 s ik (in line) Tai Tzk (COS 2flf 7 - i sin 277f 

dik 
- 

VX ,>1 
X 

k=l 

P,(f) = output velocity P.S. 0. at point a (meters/sec)2 / cps 
[ I 

c = surface roughness coefficient meters 1 1 
v, = vehicle speed 

C 
meters/set 

3 

T = Transfer function between I .th 
ai input and point a (dimensionless for translational 

output and having dimensions of radians/meter for angular output) 
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; 
oc 31 Symbol for “real part of” 

bik (in line)= 1 ‘f . p t I In u s i and k are for in-line following wheels and zero otherwise. 

T:k = complex conjugate of T,k 

f = frequency (cps) 

dik = horizontal distance between input i and k (meters) 

The first term in Equation 44 is the square of the modulus of each transfer function times the in- 

put P.S.D. Th e second term is the interaction effects due to in-line following wheels. The two 

terms for interaction between each pair of in-line wheels (which are complex conjugates in Equa- 

tion 38) have been combined to give twice the real part. 

Equation 44 gives a velocity output P. 5. D. for each degree of freedom (a) of interest 

in the vehicle. To compute a displacement or acceleration P.S.D. it is merely necessary to 

multiply the velocity P.S. D. at each frequency by I or 4 2 f2 respectively. 

47r2 f2 

4.1.3 Output Considerations 

Since the input function is Gaussian, the output motions of the linear vehicle model 

will also be Gaussian. The variance and thus the standard deviation of the output can be cal- 

culated by integrating the appropriate P.S. D. over the desired frequency range. Knowing the 

standard deviation it is possible to calculate the probability of exceeding any predetermined value. 

These values might be the lunar g for lift-off, and static equilibrium angles for roll over and pitch 

over (See Appendix D). 
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4.2 Time Domain Approach 

A time domain approach is used to analyze non-linear systems. Differential equations 

of motion are written for the system, to characterize the activity of various elements using 

Newton’s Second Law (See Appendix C). These differential equations are programmed on an 

analog computer such that the various components in the computer behave in a manner analogous 

to the physical system. In order to compute the response of the system to a deterministic input it 

is necessary to have two surface profile traces properly spaced for the vehicle tread width recorded 

in continuous fashion on magnetic tape. Properly spaced tape heads allow reproduction of the 

signals at the proper time to excite the trailing wheels in the vehicle model. Vehicle speed is 

controlled by either changing the computer “time scaling” or by changing the playback speed 

of the tape. 

If random inputs are employed the velocity input can be generated by a random Gaussian 

noise generator (See Appendix E.). 

4.2. I Input Considerations 

The random surface profile Y, is interposed between the vehicle rim mass and the ef- 

fective soil mass, such that the wheel rim cannot be below the sum of the surface penetration and 

the profile input as shown in Figure 12. This effect is simulated by a high gain amplifier with a 

diode allowing surface-vehicle separation as shown in Figure 13. 

A random Gaussian white noise generator is used for the velocity input for time domain 

analysis. The white noise velocity input is integrated to give a displacement input for insertion 

in the circuit of Figure 14. The integrator shown has a cut-off frequency f = 1 which 

27d 
is below any frequency of interest for vehicle motions. This is similar to the detrending (space 
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-;o (white 
noise) 

Figure 14 INTEGRATION WITH TIME DOMAIN SMOOTHING 

domain smoothing) effects of the surface profile as discussed in Section I I. While this integration 

does not adequately account for surface slope characteristics it is necessary to achieve drift free 

stability in the analog simulation. The static surface slope can be taken into account in the 

analysis of the output. 

The method of determining the level of the white noise input is to filter the white noise 

between two frequencies f t and f2, ( values of 0.5 cps and 100 cps were used in Appendix E ) 

and take the mean square value of the result using an analog computer circuit w. The gain 

can then be adjusted to give 

Mean Square input volts = 47r2 c v (f2 - f ,) ( “*)2 

(? 
(45) 

c= surface roughness coefficient (meters) 

v= vehicle speed (meters/set) 

f2 = upper cut-off frequency (cps) 

f, = lower cut-off frequency (cps) 

o(= computer voltage scaling (volts/meter) 

P 
= computer time scaling (machine seconds/second) 
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If the inputs are for wheels which are not following in-line wheels (such as left and 

right side of a vehicle), then separate noise generators can be used, each adjusted to the 

proper level. 

In order to account for the effect of a preceding wheel on a following in-line wheel 
5% 

two functions are time delayed for input to the following wheel. The first function is the surface 

profile which must be delayed and fed into the following in-line wheel-soil model. The second 

is the effect of the maximum surface penetration of the preceding wheel as an instantaneous 

value as discussed in Section 3.4. 

4.2.2 Output Considerations 

The outputs of the analog computer simulation are voltages which represent the dis- 

placement and its derivatives (velocity and acceleration) at each point in the vehicle model. 

These can be processed, using analog computer techniques, to give direct estimates of the P.S.D. 

or A.P.D. at the point in question (see reference 12 and Appendix E). 

In addition, the probability of meeting limiting values can be easily estimated using 

analog circuitry. Hard limiters(or diodes) can be employed to give a pulse output at each time 

the roll or pitch displacement exceeds some static equilibrium limit. While in reality, the 

vehicle operator would normally employ an evasive action prior to roll-over, counting the number 

of roll-overs in a given distance traveled is a convenient method for vehicle comparison. The 

percent of time that lift-off occurs for any one wheel or any combination of wheels can be 

measured in a similar fashion (See Appendix E ). 
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V. SUMMARY 

A statistical analysis technique has been developed for the classification of virgin ter- 

restrial and extraterrestrial surfaces D It has been demonstrated from available data that the 

-2 
power spectral density of profile height for a traverse across the lunar surface is equal to CA . 

C is the surface roughness coefficient andAis spatial frequency. A six db per octave, zero 

phase shift filter has been devised and implemented to detrend finite digital data samples and 

thus allow an accurate estimate of the surface roughness coefficient. Available information 

shows that the amplitude probability distribution of surface roughness is Gaussian. The variance 

can be computed by integrating the P.S.D. over the frequency range of interest and it is suf- 

ficient to predict the probability of exceeding any given level. Thus, the single parameter C 

completely specifies the surface roughness in a statistical sense (see Section II and Appendix A) O 

A dynamic non-linear yielding surface model has been developed from existing informa- 

tion of soil mechanics. This model includes the hysteresis due to initial soil compaction and 

effects of vehicle speed and loading area (see Section III and Appendix B). 

Traditional analog computer techniques have been used to simulate lumped parameter 

models of typical lunar vehicles. An analog computer network, capable of accurately predict- 

ing the dynamic response of vehicles traversing yielding and non-yielding surfaces (see Appendix 

C) has been developed and implemented. A technique is included which allows a random sur- 

face profile to be introduced between the vehicle model and the yielding surface model and 

allows vehicle-surface separation. The probability of exceeding design limits can easily be 

predicted, from this model analysis, and used for vehicle design optimization. 
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An early NASA concept vehicle model was used to demonstrate the stochastic techniques 

of model analysis. Appendix D describes a linear frequency domain analysis of this vehicle model 

on a non-yielding surface using transfer function concepts. In this case a random input was deter- 

mined from lunar surface roughness. The probability of exceeding design limits was predicted by 

computing the variance of vehicle motion and assuming a Gaussian output distribution based on 

the linear system model and Gaussian input. 

Appendix E describes the time domain analysis for a non-linear version of the same vehicle 

model on a yielding surface using the analog network. In this case the prediction of meeting 

limiting constraints can be directly measured from analog output. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

6. I Conclusions 

The following conclusions result from the general investigation and theoretical development 

reported herein. 

(1) 

(2) 

The properly interpreted variance of the surface profile is sufficient to completely 

specify, in a statistical sense, the surface roughness of a virgin terrestrial or extra- 

terrestrial surface. 

A statistical technique has been devised and implemented for analog computer solution 

which is considered the best available method for analyzing vehicle motions excited 

by rough yielding and non-yielding surfaces. 

6.2 Recommendations 

The following recommendations are made in the interest of aiding future research programs 

tailored toward surface classification and vehicle performance. 

(I ) A generalized digital computer program should be written to allow statistical analysis 

of digital profile height and slope information and classification of surface roughness. 

(2) Statistical techniques should be developed and implemented in the form of computer 

prediction of vehicle power requirement, mobility analysis, LEM landing site accepta- 

bility analysis, and other key engineering applications based on the surface roughness 

classification. 
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(3) Further study is needed to establish the validity of the yielding surface model and 

an experimental program should be undertaken with a typical vehicle on a yielding 

terrestrial surface. 

(4) Complete statistical dynamic response analysis should be made using the latest lunar 

vehicle designs being developed, for the purpose of establishing more complete design 

criteria and design modifications. 
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ANALYSIS OF LUNAR SURFACE ROUGHNESS 

By: G. E. McCarron and V. J. Borowski 

This appendix is a development of the mathematical concepts necessary to characterize 

surface roughness in a statistical fashion and a presentation of the analysis of some of the avail- 

able data from Ranger photographs. 

A. 1 Theory 

This section is a development of the theory and mathematical concepts as 

applied to the processing of Ranger data and classification of the lunar surface 

roughness. 

A. I. I Determination of Spectral Density 

The power spectral density (P.S. D.) is the second moment or 

variance density spectrum. In order to determine the P.S. D. for a 

surface, the profile record must be a sample function from a stationary 

random process. (‘3) Stationarity implies that the mean value and 

higher moments are space invariant. P. S. D. of a random function, 

f(x) I is defined as the Fourier transform of its autocovariance. The 

average height of the profile function f(x) is expressed in Equation A- I. 

X 

(A-‘) 

In order to compute a meaningful autocovariance the average must be 

zero. This can be achieved by subtracting the average value from each 

of the points in the original function. 
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F(x) c f(x) -f(x) ( A-2) 

The autocovariance, $ (a), is defined by Equation A- 3. 

F(x + a) dx 

The P.S. D. is defined by Equation A-4. 

P(.n.)= 2 

(A-3) 

(A-4) 

The factor of 2 in Equation A-4 is due to the convention adopted in 

this report, that the integral on frequency from 0 to 00 of the P.S.D. 

is the variance. The P.S.D. can be obtained by direct substitution of 

Equation A-3 into Equation A-4. 

P(.II) = 2 J&L & 6~) F(x d- a) dx) ei2nnada (A-5) 

If F(x) is a well behaved function, in the mathematical sense, the above 

expression may be written as: 

F(x -C a) dx} e- i 271 n-ads (A-6) 

It is now convenient to define a 

F(x) for 
H(x) = 

0 for 

new function H(x) such that 

x <Ixl 

x >IN 

By changing the order of integration Equation A-6 may be written: 
ww ( A-7) 

e 
- i 277.*(x + a) 

H(x) ei 2wnxdx 
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The Fourier transform S(n) of H(x) is defined as: 

i 2tr.n~ 
dx a 

- i 2’TT.n. (x + a)dx (A-8) 

Substituting Expression A-8 into Equation A-7 gives 

P(nJ = 
Limit I Limit 
x*a,~ s(n)s(-n) = x-tao #(n)12 

., 
(A-9) 

Limit I 

= x-ux 

i2nnx 
dx I2 z kmi’, $ 

i 2nnx 
dx12 

Equation A-9 states that the P. S. D. of a random function F(x), is the average 

of the square of the modulus of its finite Fourier transform in the limit as the 

averaging time goes to infinity. 

Using Euler’s theorem the final form of Equation A-9 can be expanded 

to yield. 
X X 

P(n) = 
Limit I 

x-too z 
II- 

F(X) cos (2nn.x) dx - i 

/ 

F(x) sin (2nn x) dx I2 (A- IO) 

X -x 

The two functions A(.fI) and B(n.) will now be introduced and defined as follows: 

X 

A(n) = ; 

i 

F(x) cos (2fl t-Lx> dx 

xX 

B(.ft.) = ; 

/ 

F(x) sin (2n n x) dx 

-x 

(A- 11) 

(A- 12) 

Substituting +Expressions A-l 1 and A- 12 into Equation A- 10 yields: 

P(n) q kziL X I A(n) - i TV.) I2 (A- 13) 

A similar relationship between Fouier transforms and cross-spectral density of 

two related functions, F, and F2, is 
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C(i .n-) = Limit 1 
x-03 x 

i 2 J7.n~ 
dx 1 (A- 14) 

Substituting the Expressions A-11 and A-12 for the functions F f(x) and 

F2(x) into Equation A- I4 gives: 

(A- 15) 

C(i.n) = Cimit 
OD 

X {A ,U’-) A2( f-0 + Bl(n) B2Lf-d + i [n,(n) B2(n) - A,CfU B ,(n )I> 

The real part of C(i n) is the cospectral density and the imaginary part is the 

quadrature spectral density. 

A. 1.2 Estimation of Power Spectral Density 

If the profile height Yi is available at equal incrementsnx over a 

finite length the autocovarionce function pa can then be approximated by the 

relationship: 

ab= 1 ~a yiyi+a 
n-a 

(A- 16) 

i= I 

The P.S.D. estimate is: (p. 53 Ref. 13) 

Pin) = 2AX[JIo + 2 my Pa cos +!L + Jlrn cos n V] (A- 17) 

a= I 

Another method of estimation from a finite data sample of length L = 2X 

is to use Equation A- 13 and neglect the limiting process. 

P(n) = i [A(nJ2 + B(IU2] (A-18) 

The functions A(.n.) and B(.fL) are defined in Equation A- 11 and A- 12 as continuous 

functions of JL These definitions are identical to the Fourier series coefficients 
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at the discrete frequencies where.fI.= n/L and n is a positive integer. Thus, 

at these discrete frequencies an estimate of the P.S. D. can be defined by 

Equation A- 19. 

P(n) = !j [A(n)2 + B(n)2] ( A- 19) 

Due to the inability to accurately resolve any frequency in a finite sample, it 

is necessary to smooth the spectral estimates from Equation A- I7 or A- I9 over 

neighboring frequencies. 

co 

- Ix 

P(n) = Ak P(n - k) (A-20) 

k Z-m 

The Ak coefficients define a particular spectral window. Table A-l lists the 

coefficients for five spectral windows where the first three hove been previously 

published. The last two are linear and exponential windows developed for 

analysis of lunar surface profiles since it was deemed necessary to smooth the 

P.S. D. estimates over a wider frequency range for the limited amount of avail- 

able data. A digital computer program (FOR-5) based on an implementation of 

Equations A- I9 and A-20 is presented at the end of this Appendix. 

A. 1.3 Stationarity and Space Domain Smoothing 

A stationary random process is defined as one whose statistical properties are 

unaffected by a shift in the scale of the independent variable of the process. Since 

the length of a data sample determines a lower limit on frequency resolution it is 

not possible to prove stationarity from a data sample of finite length. Any component 

of the process with a frequency less than the limiting value appears as a trend or 
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Table A-l COEFFICIENTS OF SPECTRAL WINDOWS 

Coefficient Hamming Hanning Akai ke Linear Exponential 

Values Values Values Values Va I ues 

A0 .54 .50 .42 . lllll 

Al = kl .23 .25 .25 . 11111 

A2 = Am2 0 0 .04 . I1111 

A3 = Am3 0 0 0 . lllll 

A4 = Am4 0 0 0 . 11111 

A5 = A-5 0 0 0 0 

A6 = A-6 0 0 0 0 

A7 = A-7 0 0 0 0 

A8 = A-8 0 0 0 0 

A9 = A+ 0 0 0 0 

All others 0 0 0 0 

.29395 

. 10531 

.07546 

.05407 

.03874 

.02776 

.01989 

.01425 

.01212 

.00732 

0 

non-stationary component which will contaminate P.S.D. estimates computed from 

the data. Two types of common trends found in surface profile traces are shown in 

Figure A- I. In order to reliably process data it is necessary to eliminate the trends 

from the data and analyze the results, with the realization that low frequency compon- 

ents have been removed. A numerical filter based on a moving two sided exponentially 

weighted average was developed to compute the trend for digital data. The data 

trend F(x) at point X as a function of the original data F(x) is given by: 
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Raw Data 1 

Trend 1 

Raw Data 2 

Trend 2 

Figure A-l TWO DATA TRENDS 

F(x-4a) F(x-2a F(x) F(xt2a) F(xt4 a) 

X‘ 

Figure A-2 EXPONENTIAL DETRENDING OF DATA POINTS 
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F(x) = 
nzo [F(x + no) -I- F(x - na)] e - na’X 

aI 

27 e- 
na/ X 

Where the notation is explained in Figure A-2. 

The detrended or filtered data F, (x) is then given by the relation: 

Fd (x) q F(x) - F(x) 

(A-21) 

This type of filtering is similar to an analog electrical high pass filter with the 

exception that two sided averaging (both past and future) can be performed on 

digital data to remove phase shift characteristics. To demonstrate this effect 

consider Equation A-21 in the limit as n-+oo ond a becomes a continuous variable. 

In this limit, Equation A-21 becomes: 

co 

F(x)= -& 

/ 

[F (x + a) + F (x - afl e - 
a/X 

da 

0 

( A-23) 

If F(x) is now considered to be a continuous signal of the form sin (277 n. x), then 

Fd(x) is: 

F, (x) = 
sin (277n-x) 

n ( A-24) 

Thus, the detrending filter effects only amplitude of the input and not phase. 

Equation A-24 affords an insight into the interactions and influences between de- 

trending, the weighting constant A, and frequency. It can be seen that the ampli- 

tude of the detrended function approaches that of the original data for forge values 

of n A. That is, for high frequencies or for broad based exponentials, the detrended 
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function is approximately equal to the original function and little attenuation 

at this frequency is apparent. Conversely, if the product of n his very small the 

amplitude of the detrended function approaches zero ond this frequency component 

is highly attenuated. 

From Equation A-24 the transfer function as a function of frequency n., and 

weighting constant his: 

Amp. ratio = I 
( A-25) 

I + 

In practice a finite averaging interval must be used. For this case the trans- 

fer function is given by: 

Amp Ratio a 1 - 
L I + een lY2 71 fI- X sin (2Tr n n. X) - cos (2 TT nn X)}] 

( A-26) 

(I -e -n) [I + (2~n h2] 

The averaging interval is -n AtonX, h w ere n is any positive number and x is the 

exponentiol weighting constant. A weighting over 3 Xis reasonable for most practi- 

cal applications. 

Since the sample length is finite, some attention must be given to those points 

for which the averaging interval extends beyond the end points of the data sample. 

In order to account for this, the data was extended for a length 3 x beyond each 

of the end-points by mirror reflection. If the original data is defined as F(x) on 

the interval (0, L), then this reflection is given by: 

F(x - a) = F(a - x) For x-a <0 

F(x + a) = F(2 L - X -a) For x + a > L 
( A-27) 
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This endpoint reflection is a method of estimating the expected value beyond the sample 

length. This estimate is exact for an even periodic function but causes a distortion near 

the endpoints for an odd periodic function. Figure A-3 shows the distortion for a unit 

amplitude sine wave which has been detrended with a weighting constant equal to one 

tenth the wove length. 

Figure A-3 EFFECT OF END POINT REFLECTION ON DETRENDED ODD FlJNCTlON 

The frequency cut-off or half-power point JI l/2 is the frequency at which the 

P.S.D. of the filtered function is one-half of that of the unfiltered function, and is 

defined as a function of x by Equation A-28. 

I 

.* l/2 q 

2 7-r x (/JT I ) ‘I2 

(A-28 ) 

The effect of an exponentially-weighted-average filter on an ideal P. S. D. predicted 

by Equation A-29 is shown in Figure A-4. If a trend is contained in the data sample it 

P(n)= c(n)-2 (A-29) 
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is quite likely this trend will increase the estimated P.S.D. at each frequency as 

shown by the line marked Undetrended Estimate in Figure A-4. This, in effect, 

would raise the estimated value for the surface roughness constant coefficient C. 

The two finite data trends shown in Figure A-l have a P.S.D. estimate similar to 

the ideal P.S.D. If a substantial trend such as either of these exist in the data it 

might obscure the real data of interest. Thus, before an accurate estimate of sur- 

face roughness can be made the data must be detrended. The effect of detrending 

on the ideal P.S.D. is also shown in Figure A-4. Here it is noted that detrending 

removes the lower frequencies. 

This figure also indicates the importance of selecting an appropriate exponential 

weighing factor x . Excessively large weighting factors will fail to remove the trend 

completely and the resulting estimates of surface roughness will be high. As the 

weighting factor is reduced the detrended P.S. D. approaches the ideal and reason- 

able estimates of surface roughness can be made. As the weighting factor is further 

reduced, higher frequencies are filtered out, and the estimate of surface roughness 

can be contaminated by statistical errors in resolving higher frequencies from digital 

data. 

A. 1.4 Amplitude Probability Distribution 

The amplitude probability distribution (A. P. D.) of a continuous random 

variable F(x) as given by Equation A-30 defines the probability that F(x) will 

exceed the level Y. 

X 

A.P.D. (Y) = ;i’, $ $[F(x)>Y] dx 

i 

(A-30) 

-x 

where s [i(x) > Y] is a delta function defined by Equation A-3 1. 
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s [F(x) > Y] = 

I if F(x) 2 Y 

( A-31) 
0 if F(x) < Y 

An estimate of the A. P. D. can be obtained from a finite continuous signal by 

dropping the limit of Equation A-30 as shown in Equation A-32 : 

A.P.D. (Y) = -!- 
2x 

i 

&b)>Y] dx ( A-32) 

-x 

where 2X is the data length. For a discrete digital data sample the integration in 

Equation A-32 is replaced by summation as given by Equation A-33: 

N 

A.P.D. (Y)= 4 
I[ 

b F(xi) >Y] 

i=l 

( A-33) 

where N is the total number of data points. Equation A-33 was used to calculate 

the A. P.D. of the Ranger VIII data and the computer program AMPDIS is given at 

the end of this appendix. In the preceding section it was shown that the presence 

of a trend in the data sample could lead to erroneous estimations of the P.S.D. 

It is reasonable to expect that the same is true in the case of A.P.D. Figure A-5 

shows the A. P. D. of a linear trend plotted on probability paper. The straight line 

in the figure is a plot of a Gaussian distribution whose standard deviation is equal 

to that of the linear trend. Figure A-5 clearly shows that the existence of a trend 

in the data could indeed lead to misleading estimates of the A.P.D. Thus, as in 

the case of the P.S.D., the data must be detrended before an accurate estimate 

of the A.P.D. is possible. 
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The effect of detrending on the A. P. D. ond the P.S. D. of an actual surface 

profile is shown in Figure A-6. This figure shows the A.P.D. and P.S.D. of the 

undetrended profile and of the same profile after it had been detrended, with X% 

of 5 and 2 meters respectively. 

A. 1.5 Variance and Calculation of C 

The P.S. D. of a virgin terrestrial or extraterrestrial surface can be closely 

approximated by Equation A-34. 

Pd (Jl.) q c n--2 ( A-34) 

The variance of the surface is equal to the P.S.D. integrated over all frequency, 

or expressed mathematically 

( A-35 ) 

The above integral does not exist due to the singularity at .n= 0. If a surface 

profile with a P.S.D. given by Equation A-34 is detrended, the P.S.D. of the 

filtered function is given by: 

P, (.n-) = 
c .n -* 

2 

[ 
1 + 

I 

(2 m n. A)* I 

( A-36 ) 

To show this, consider the P. 5. D. defined in terms of the Fourier transform as given 

by Equation A-37. 
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A 

P.S.D. = Limit 1 F(x) e- 
i 2 frJJ-x 

x--i00 x 
dx I’ = C.!-t-* ( A-37 ) 

If the function F(x) is passed through the detrending filter, the filtered function 

is given by; 

F(x) 
( A-38 ) 

C 1 + I 
(*7x-l X)2 1 

If this expression is substituted into Equation A-37 in place of F(x), the P.S. D. of 

the filtered function is then: 

P.S.D. = ;Fi; ; 1 (A-39 ) 

Since the denominator of the integrand above is inherently positive and independent 

of x it may be factored out, so that Equation A-39 may be written as: 

P.S.D. = 

(A-40) 

The variance of the filtered function can now be written as: 
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CdX 

2 
( A-41 ) 

Equation A-41 gives the relationship for the variance of the detrended data, 

in terms of the filtering constant )\ and the P. S. D. constant C. Since variance 

can be accurately estimated from a finite amount of data, Equation A-41 is 

a good means of estimating the surface roughness coefficient C and thus the 

P.S.D. 

A. 2 Application 

In order to show the application of the techniques developed in the preceding 

section, some of the available information from the Ranger photographs has been proces- 

sed. This processing was not intended to be a comprehensive analysis, but rather a 

verification of the techniques developed and allowed a preliminary estimate of the 

lunar surface roughness for an input to vehicle dynamic analysis. 

A.2. I Analysis of Jet Propulsion Laboratory Data 

The Jet Propulsion Laboratory has processed and ,published (17) some 

of the available data from Ranger photographs. J. P. L. used the Ranger 

television scan lines to determine brightness of the lunar surface. The 

elevation height for a matrix of points covering the photographs, was then 

determined from this brightness information. A compensation (called a sine 

wave rectification filter (SWRF) ), f or camera angle was also attempted in 

the analysis. The lunar topographical data supplied to Chrysler Corporation 
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by the Jet Propulsion Laboratory was the elevation and the brightness print- 

outs (with and without (SWRF) ) for the last two P-3 frames from Ranger VIII. 

The last frame covered an area of about 13,000 square meters. Estimates 

of surface elevation were provided in a 277 x 373 element matrix covering 

the surface of this frame. The horizontal distance between elevation points 

is .381 meters and the vertical definition was .09 meters. The next to last 

P-3 frame covered an area of about lOj,OOO square meters. lt was decided 

to use arbitrary profile height traces from these photographs for analysis. Five 

data sets were analyzed from the last Ranger P-3 frame and one data set was 

analyzed for the second to the last Ranger P-3 frame. The relative locations 

and designation of each of these data sets is shown in Figure A-7. All of the 

data analyzed were compensated for the sine wave response fall-off of the 

camera (with SWRF). Data Sets 2 and 4 were analyzed prior to detrending 

to show the effects of detrending. Figure A-8 shows a plot of the raw data 

for trace 2, the computed trend, and the detrended profile. Figure A-9 shows 

the same information for Data Set 4. A substantial trend exists in Data Set 4 

and, in fact, in all of the profile traces running parallel to this data set. 

Figure A-10 shows the amplitude probability distribution plots for Data Sets 

2 and 4 before and after detrending. The effects of detrending can be seen 

here in Data Set 4 The trend has a significant influence on the data, making 

it appear non-Gaussian. The detrended data more nearly approximates a 

Gaussian distribution. In each case, the straight line on these plots is that 

of the Gaussian distribution calculated from the variance of the actual data. 
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The effect of x on the estimate of C for Data Set 4 is shown in 

Table A-2. A value of 5 meters for A was chosen for the processing of 

the Ranger VIII data since this value was the largest one effective in de- 

trending Data Set4; which had the most substantial trend. In order to show 

the effect of this frequency cut-off on vehicle behavior consider the follow- 

ing argument. If F Min is the lowest temporal frequency considered to have 

any effect on the vehicle’s behavior and VMax is the highest vehicle velocity, 

then 

n- q 
FMin 

Min 
‘Max 

(A-42) 

Where II. Min is the lowest spatial frequency which will affect the vehicle’s 

behavior. If 5 meters is then used for x to colculote the half-power point of 

the detrending filter (See Equation A-28) and 4.77 meters/second (IO mph) 

is chosen as a top speed, this yields a value for FMin of 0.5 Hertz (CPS). 

This value is approximately one octave below the lowest resonant frequencies 

for most vehicles. 

The amplitude probability distribution, variance, and standard devia- 

tion for each of the detrended data sets were calculated. Figure A- IO shows 

this information for Data Sets2 and 4 and Figure A- 11 shows the results for 

the detrended Sets I, 3, 5, and 6. While the data available is very crude 

in a statistical sense it is possible to state that the amplitude probability 

distribution for the detrended data is Gaussian within the statistical accuracy 

of the data available. 
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Table A-2 EFFECT QF x ON ESTIMATE OF C 

DATA SET 4 

)\ Variance Std. Dev. C 
Meters (Meters)2 (Meters ) (Meters)2 Cycle/Meter 

1.00 0.00129 0.0359 2.61 x 1O-4 

2.00 0.00252 0.0502 2.55 x lO-4 

3.00 0.00352 0.0593 2.37x 1O-4 

4.00 0.00473 0.0688 2.40 x 1O-4 

5.00 0.006 I5 0.0784 2.49 x 1O-4 

6.00 0.00780 0.0883 2.63 x lO-4 

7.00 0.00966 0.0984 2.80 x 1O-4 

8.00 0.0117 0.108 3.00 x IO’4 

9.00 0.0142 0.119 3.19 x 10-4 

10.00 0.0171 0.131 3.47x 1o-4 

II.00 0.0206 0. 143 3.79 x lo-4 

The P. 5. D. of the lunar data was determined by means of Equation 

A- 19. Linear and exponential spectral windows were employed for frequency 

domain smoothing, as given by Equation A-20 and Table A- 1. The linearly 

smoothed P.S.D. is given in Equation (A-43). 

n +4 

(A-43 ) 
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The equation for the exponentially s.o$ed P. S. D. is: 

+ b; + ) 
=n 

-9(af + By).- 
I 

9 

Ix 

- i/3 
e 

i= 0 

i/3 ’ 

(A-44) 

Figure A- I2 shows the P.S. D. plots of the raw data for Data Sets 2 and 4 

with both the exponential and linear smoothing. Figure A- I3 shows the P.S. D. 

estimates of all six detrended sets with both linear and exponential smoothing. 

It can be seen in every case that the slope of minus two is approximately 

satisfied by each of these curves. The effect of detrending can be seen in 

some of these curves and is most obvious in Figure A- I3 for Data Set 5. A 

value of C was determined for each of these data sets from the variance. A 

value of C was also calculated by taking 50 data points from the P.S.D. beyond 

the effective cut-off frequency of the filter, and computing this value. Table 

A-3 is a summary of the values of C calculated by these two methods. Data 

Set 4 was numerically differentiated to obtain the lunar slope information. It 

should be recognized that the available data is somewhat crude and numerical 

differentiation can lead to large errors. Nevertheless the P.S.D. of the slope 

was approximately constant over the frequency range and is shown in Figure 

A- 14. 

Data Sets 4 and 5 are parallel profiles across the surface separated by 

the approximate width of a typical MOLAB (2.5 meters). The cross-spectral 

density of these two data sets was calculated and is presented in Figure A- 15. 

This cross-spectral density is normalized in such a fashion that perfect 
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Table A-3 VALUES OF C FOR LUNAR SURFACE 

DATA SET STANDARD FORMULA VALUE OF C IN METERS 
DEW ATI ON CALCULATED CALCULATED 

FROM(a) FROM P. S. D. 

Ranger VI I I 

J.P.L. - I 
Last P-3 Frame 

Ranger VIII 

J.P.L. - 2 
Last P-3 Frame 

Ranger VIII 

J.P.1 - 3 
Last P-3 Frame 

Ranger VI I I 
J.P.L. - 4 
Last P-3 Frame 

Ranger VI I I 
J.P.L. - 5 

Last P-3 Frame 

Ranger VIII 

J.P.L. - 6 

Next to Last 
P-3 Frame 

Ranger VIII 
J.P. L.- 4 

Slope 

Ranger VII 

U. S. G. S. 
Last P-3 Frame 

o- = .077 

u = .078 

w = .080 

o- = .078 

u = .092 

cr = .I90 

u = .052 

C 2u2 - 

5TT2 

C 2u2 - 

5n2 

2 
c= 2cr 

5n2 

2 
c= 2cr 

5rr2 

C 2a2 = 

5rr2 

2 
C =?” 

17. I5 ST2 

cc .Ol I 

4n 2 

c= 
ALU 2 

2-n 2 

2.4 x lO-4 8.01 x IO 
-4 

2.4 x lO-4 

2.6 x IO 
-4 

6.31 x IO 
-4 

2.49 x ‘lO-4 

2.4 x lO-4 

3.4 x lo-4 

4.3 x 10-4 

------- 

5.3 x lo-4 

3.67 x lO-4 

3.48 x lO-4 

8.35 x lO-4 

2.8 x lO-4 

----- -- 
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correlation would give a unit co-spectral density. It appears from these plots 

that the correlation between traces even this close together is negligible. 

There is no substantial trend of correlation between the plots, and the noise 

which does exist is considered to be due to statistical errors. While this data 

is not conclusive it points toward the validity of using separate members of 

the ergodic set predicted by the P.S. D. of one trace as inputs to the two sides 

of the vehicle. 

A.2.2 Analysis of United States Geological Survey 

Just prior to the end of this contract digital slope information from 

the U. S. Geological Survey was made available. This information was ob- 

tained from the last partial P-3 camera frame of Ranger VII. One set of slope 

information across the lunar surface was processed to give the amplitude proba- 

bility distribution. This plot is shown in Figure A- 16. It can be seen that the 

slope distribution is near Gaussian. A value for the constant C was computed 

from the variance of the slope information and is presented in Table A-3 to- 

gether with estimates of C from the J. P. L. data. 

A. 3 Digital Computer Programs 

Several digital computer programs were written to process the lunar data. In 

each case these are very direct approaches to the digital technique described in Sect- 

ion A. 1. A list of each of the programs used is given on the following pages. The 

language (BASIC) is an elementary algebraic language used on a General Electric 

235 computer in the time sharing mode. A description of the language is given in 
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6 

Reference 18. The language is a very descriptive one and should allow analysis 

of these programs even by non-experienced computer programmers. 

The first program listed, DETREN was developed to.allow detrending of 

the raw data. 

The second program,- AMPDIS computed the average, maximum and minimum 

about the average, amplitude probability distribution, variance and standard deviation 

of the input data. 

The third program listed, FORSER, computes the Fourier coefficients of the 

input data and then uses these coefficients to reconstruct the input data for valida- 

tion. It also compares the reconstructed data to the input data and computes the 

percent error of the reconstruction. 

The last program listed, FOR 5, computes the Fourier coefficients and their 

magnitude squared. It then smoothes the squares of the magnitudes in a linear and 

exponential fashion and prints out the smoothed values as the P.S. D. 
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DETREN 

1 ?tE.yI BXJCE \/A.V DEUSEN 1'IE LII'JE 660 EXr 24 
2 ;IEi'l XXX 
10 
80 LET E=O 
90 LET P=O 
100P~INr900i"D4rA"~ 
110 DIIY FCSOO)rKC200) 
120 LET D=2 
130 i3EAD N,HaS,L 
140 F3ii X=1 T3 N 
150 IiEAD FCX) 
160 IF S*X/L*3 THEN 200 
170 LET KCX)=EXPC-S*X/L) 
180 LET D=D+KCX)*2 
190 LET E=E*l 
200 INEXT X 
210 F3ii X=1 T'3 N 
220 FM Y=O T3 E 
230 LET Z=X+Y 
249 IF Z<=N THEti 260 
250 LET 2=2*N-2 
260 LET .J=X-Y 
270 IF 4~0 THEN 299 
280 LET +J=-d+l 
290 IF Ye,0 THEN 320 
3'30 LET ?4=2*F<Xl/D 
310 G3T3 330 
320 LET' ~~=~~+CFC~)+FCZ))*K<Y)/D 
330NEXT Y 
340 LET K-F(X)-Y 
350 LET K=10~C-S~*IN'rCK*10~5~ 
360 IF P-5 THEN 400 
370 ?~INTK;"r"; 
380 LET P=P+l 
390 G3r9 430 
400 PiiIdr K 
410 ?2LNT 900+X/6J"DATA"j 
420 LET P=O 
430 NEXT X 
9999 END 
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AMPDIS 

1 REM BRUCE 0. VAN DEUSEN-CHdYSLEd C3RP-DET~3IT--VE6-41OO--EXT24 
2 REM XXX 
S GO T3 9000 
10 LET A=0 
20 LET V=O 
30 DIM F<POO) 
40 READ NaH 
SO F3ii X=1 TO N 
60 READ FCX) 
70 IF Xe+l THEN 100 
80 LET Ql=FCX) 
90 LET Q2=Ql 
100 LET A=A+F<X) 
110 IF F<X)*Ql THEN 130 
120 LET Ql=F<X) 
130 IF F<X)<QB THEN 150 
140 LET Q2=F<X) 
150 NEXT X 
160 LET A=A*H/N 
170 LET Ql=H*Ql-A 
180 LET Q2=H*Q2-A 
190 PRINT '*AVE="A,"MAX="~~D"~~I~~="~~ 
200 LET L=d2 
210 IF Q2,-81 THEN 230 
220 LET L=-Ql 
230 LET Kl=O 
240LET K2=0 
250 IF La1 THEN 290 
260 LET L=lO*L 
270 LET Kl=Kl+l 
280 GO T3 250 
290 IF Let0 THEN 330 
300 LET L=el*L 
310 LET K2-K2+1 
320 GO I-3 290 
330 LET L=l+INTCL) 
340 LET L=L+<lO~K2)*<.ltKl) 
350 PRINT 
360 PRINT'*AMPLITUDE DISTRIBJrION" 
370 PRINT"LEVEL", "+0'*,'~+".01*L,"+".02*L,"+".03*L 
375 PRINT 
380 FOR Y=-L TO .96+L STEP C/25 
390 LET Cl-0 
400 LET C2=0 
410 LET C3=0 
420 LET C4=0 
430 F3R X=1 T3 N 
440 IF Yea-L THEN 483 
450 LET F<X)=H*F<X)-A 
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AMPDIS tCON’T.1 

470 LET V=V+FCX)t2 
489 IF F<X><Y rHEN 560 
490LET Cl-Cl+1 
500 IF F<X><.Ol*L+Y THZN 560 
510 LET c2=c2+1 
523 IF FCX><Y+a32*L THEN 560 
530 LET C3=C3+1 
540 IF FCX)*Y+.33*L THEN 560 
550 LET C4=C4+1 
563 NEXI' X 
570 PRINT YIC~/N,C~/N,C~/~~~C~/N 
580 NEXT Y 
590 ?dINT 
600 PdINr “VA.IIANCE=“V/N~ “SrAIVD43D DEJIATI3.V=“S~~~CV/rV~ 
88~0 srw 
9000 ?.~I~~T”i’HIS Prl3G;IAM CALCJLArEY I’HE AJE.~AGEI~AXI~J~,~INI~U~~*’ 
9013 ?iliNA-“CAa3J’r THE AVEJ~AGE) AiYD VAriAINCE 3F NU’IEKICAL DArA PL4CED” 
9029 PRIN'r"IN DAI-A Si-ArE+lENTS. I r ALSO CALCJLATES THE AwLIruDE** 
9330 PRINr-PxmA3ILIrr DIsr~IwrIoN. THIS IS THE INTEGRAL DIS~TdIi3uTI3N" 
9040 PRINT-THAT IS THE NUMBER 3F DATA PI)INTS AB3JE LEVEL CL) VS CL)” 
9050 PRINT-THE LfMIrs ARE AUTWATICALLY CALCULATED AND 100 EQUAL” 
9060 PdINI-“INTEt3VALS ARE CtlOSEN FOd PLdIrING ON PROBABILITY PAPER" 
9070 PRINT"IN 3RDER T3 i3JN PAINT (5 DArA I'JIH) dHEi3E N IS THE NUMBEd" 
9080 PriINr”3F DATA POINTS AND H IS A #uLi-IPLICATION 3i3 SCALE FACT3d” 
9090 PRIINT"I l ED IF THEitE AdE 200 DATA ?31NTS AND N3 SCALING IS DESI&EO” 
9100 PRINT"PRINr 5 DArA 200al -----THEN LdAD DATA IN D4TA” 
9110 PRINT"STArEM5Nl-S SrAdI'ING 4JITri STATEMEIYT 700 --Ai’JD RUN" 
9998 D4T4 1 
9999 END 
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F ORSER 

1 REM BRUCE De VAN DEUSEN-CriRYSLEr? C&W-DErdOIr--VE6-4100 EXl- 24 
2 i3EM XXX 
10 G3 T3 590 
90 LET A=C 
100 DIM FC351~rS<35l~~C<351~~AClSD~~~ClSO~ 
110 READ NsH#J 
120 FOR X=1 T3 N 
130 READ F(X) 
140 LET F(X)-H*FCX) 
150 LET A=A+FCX) 
160 LET S<X>=SINC3.14lS926*X/N) 
170 LET C<X)=CDSC3.1415926*X/N) 
180 NEXT X 
184 LET CCO)+l 
186 LET sco>=o 
190 PRINT “FOUHIE~ SERIES C3FFFICIENTS” 
200 PRINT”H.AR,~,~NVIC”r” A”r” W.‘*MAG SdUAdED” 
210 PRINT” On’sA/N~‘* 0”~ <A/N) t2 
220 FaR Y=l T3 J 
222 LET A(Y)=0 
224 LET a(r)=3 
230 FOR X=1 T3 CN+1)/2 
240 LET d-N+1 -X 
250 IF W=X THEN 300 
260 GOSUB 490 
270 LET ACY)=ACY)+CCZ)*(FCX)+FC~~)~ 
280 LET B<Y)=BCY)+~*SCZ)+<F<X~-FC~)) 
290 GOI- 310 
300 LET I=C-1 )*Y 
301 LET ACY)=A<Y)+I*FCX) 
310 NEXT X 
320 LET ACY)=ACY>*2/N 
330 LET BCY)=BCY)*2/N 
340 PRINr Y~A<Y)rDCY>~ACY) t2+B<Y)?2 
350 NEXT Y 
360 PRINT “REWNSTRUCT DATA 1 3R 0”s 
370 INPUT M 
380 IF M-O THEN 480 
390 PRINT “P3INT NUMBER”,“I’dJE VALUE”a”COHPUTED VALUE”,‘*?EHCENr E;i.iO.i” 
400 F3R X=1 T3 N 
410 LET P=A/N 
420 F3.1 Y=l T3 J 
430 GOSUB 490 
440 LET P-P+ACY)*C<Z)+~*B<Y)*S<Z) 
450 NEXT Y 
460 PRINT XIFCX)0P~ABSCCF<X)-P)*lOD~FCX~) 
470 NEXT X 
480 ST3P 
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FORSER (CON’T. j 

490 LET Z=Y*C2*X-1) 
500 LET Q=l 
510 IF Z<=N rHEN 580 
520 LET Z=2*N-2 
530 LET 3=-1*3 
540 IF Z*O THEN 589 
550 LET Z--Z 
560 LET J=-l*il 
570 GJT3 510 
580 RETURN 
590 PRsNr*ePRdGxAti PRINrs FOditI~ri SERIES COEFFICIENTS FII~M DATA” 
600 PRINT”PRINT Cl0 DArA IN~HIJ) dHErlE rV IS THE rVUMBEX 3F DATA” 
610 PRINT”P3INTSaH IS A SCALE 3.d MJLrIPLCArI3N FACTdR F3i? .IA!d” 
620 P.?INT”DATA AND J IS TriE lYJlYBEr? OF H4dKMICS DESIRED------” 
630 PiZIrVT”L3AD DATA IN DArA Si’ATEt’iENA-S 700 AND F3LL3dING--AND RUN” 
9998 DATA 1 
9999 END 
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FOR 5 

1 DATA 348rlSO 
80 LET I=0 
lOODIMFC352)rSC351)~C<351),A(153) 
110 8EAD NaJ 
120 Fat? X=1 T3 N 
130 iiEAD F<X) 
163 LET SCX)=SINC 3.1415926*X/N) 
170 LET CCX)=C3SC3.1415926*X/N) 
171 IF 2*X<*N*l THEN1 80 
172LET I-F(X) 
180 NEXT X 
184 LET C(O)=1 
186 LET S(O)=0 
200 PRINT”HArWQNIC’*~‘* A’*#” B”r”MAG SdUArlED” 
220 F3R Y=l T3 J 
221LET I=-l*I 
222LETK=I 
224LETL=O 
230F3RX= 1 T3N/2 
240 LET d=N+l-X 
241 IFYe+ THEN490 
242LETA=FCX)+FCid) 
244LEI’F<d>=F<X)-F(d) 
246LETFCX)=A 
490 LET Z=Y*C2*X-1) 
500 LET Q=l 
510 IF Z<=N THEN 580 
520 LET Z=2*N-Z 
530 LET Q=-1 *Q 
540 IF Z+O THEN 580 
550 LET Z=-Z 
560 LET Q=-l*Q 
570 G3T3 510 
SSOLETK=K+C<Z)*FCX> 
590LETL=L+S*SCZj*F<d) 
600NEXTX 
60SLETA<Y)=<K*K+L*L)*4/<N*N) 
~~OPRINTY,~*K/NNNB~*L/NIA<Y) 
620NEXTY 
630P~IIYT"CY/C~"."LINEA.~"~"E~A" 
640LETQ=O 
645LETR=2 
6 SOFGiiX= 1 T39 
660LEI’Q=J+ACX) 
670LETQ<X)=EXPC-X/3) 
680LETd=d+2*QCX) 
690NEXTX 
700F3RX=S’TCJ- 5 
71OP~INrX/(N+38.l),N*38.1*~~18, 
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FOR 5 (CON’T.) 

720LE rT=X+ S 
730~~ ru= r-9 
740LETQ=3+ACT>-A(U) 
7SOIFX~l~T!-lEN820 
760 IF X*J-10 THEN 820 
76SLETd=2*ACX) 
770F3RY= 1 T39 
77SLETZ=X+Y 
777LETG=X-Y 
780LET~=J+‘~<Y)*<ACZ)+ACG)~ 
790bJEXTY 
800PRINTCW38. I*iJ)/<2*R> 
810GdT3830 
820PRI Nr” 1. 
830NEXTX 
9998 DATA 1 
9999 END 
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YIELDING SURFACE MODEL 

By: R. F. Hughes 

Surface deformation can influence vehicle motion. The discussion which follows is 

concerned with the formulation of a dynamic yielding surface model. It is recognized that 

the representation presented is grossly approximate since a comprehensive theory for dynamic 

vehicle-soil interaction does not exist. However, the essential features of soil behavior are 

believed to be adequately described for estimating surface-layer property effects on vehicle 

motion. Only a motion caused by an unbalance of forces in the direction perpendicular to 

the soil surface is under examination. 

Investigations of soil mechanics demonstrate a functional relationship between load 

penetration and soil response. Theory suggests that a portion of the reaction is dependent on 

the rate of penetration. This phenomenon is a damping action associated with the propaga- 

tion of stress waves throughout the soil and soil viscosity in the form of friction or shear. 

Therefore, it is postulated that the dynamic soil reaction force acting on a vehicle may be 

represented by Equation B- I. 

R, = B, (Z) + a’2 (& (B-1) 

R, is the soil reaction force, pl (Z ) is a function dependent on soil penetration (Z ), and 
. 

g2 (Z) is a function dependent on soil penetration rate (Z ). 

The contact surface between the soil and the wheel is assumed to be a flat plate of fixed 

shape and area “A”. From Figure B- I, the equation describing the wheel motion on a yielding 

surface is: 

m,Z + q(Z) C p,(Z) = Fv 

94 



Figure B-I WHEEL-SOIL INTERACTION MODEL 

where mw is wheel mass and Fv is the vertical force acting on the wheel. It now remains to 

determine the functions $1 (Z) and $3 (Z) from theory and the property of soils. 

B. I The Function $1 (Z ) 

Data from standard plate penetrometer tests of soil which are normally 

reserved for assessing vehicle trafficability are considered applicable to represent 

$, (Z) since this term as defined is time independent. 

The pressure-sinkage relation which has received the most attention in 

recent years is that due to Bekker 19. The Bekk er relationship is given by the 

equation: 
P z (ka + kc/b) Zn (B-3) 

where P= . appl red pressure ka = frictional modulus of sinkage 

ba least dimension of k c 1 cohesive modulus of sinkage 

loading plate area 

n = empirical exponent z = si nkage 
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A serious deficiency of this relationship is the dimensional dependence of kg, 

and kc on n. Wismer and Smith(*‘) have experienced difficulty in obtaining 

consistent values for k 
idk 

, c and n. Reece(* ’ ) deplores the lack of a sound 

theoretical basis for Bekker’s equation and recommends a new expression based 

on the bearing capacity theory of soi I mechanics. 

In view of the above arguments a relation due to Assur (22) has been adopted 

to represent soil deflection under load. Under the pressure of a rigid flat plate a 

soil will initially settle proportional to load. 

Pc K,Z (B-4) 

KS is the coefficient of subgrade reaction. lf the load is continuously increased, 

the soil eventually exhibits a deviation from Equation B-4. According to Assur 

this deviation may be categorized into one of three fundamental traits shown below. 

I Fluidization P= K,Z [I -(K,Z,‘P,)* +2(KsZ/Pm)4+....] (B-5) 

1 I Compaction Pc K,Z/(l -Z*/Z;) P-6) 

I I 1 Collapse P q KS Z/( 1 + Z*/Z;) (B-7) 

where Z = plate sinkage, P m z maximum bearing strength, 

P = bearing pressure, zm = sinkage at maximum bearing strength 

K s = coefficient of subgrade 

reaction. 

The characteristics of each type of deformation Z related to bearing pressure P is 

presented in Figure B-2. Category I i= +hq most common soil reaction and is 
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representative of clay but not restricted to clay. lt indicates a progressive deteri- 

oration of elemental particle bonding with load. Snow and very loose soils have 

been observed to respond according to Category II where bond strength increases 

with load. Category III, which is exhibited by densely compacted sand, is a typical 

behavior for a crust over a soft underlayer and predicts a collapse after a finite maxi- 

mum bearing pressure. Figure B-2 illustrated soil reaction to continuous increasing 

load. Figure B-3 illustrates soil reaction to repetitive loading with the maximum 

load increasing with each cycle. A permanent plastic deformation of the soil remains 

following each loading (AC, CE, EG, etc.). The soil recovery (BC, DE, FG, etc.) 

may be approximately described by a series of parallel straight lines which suggests 

Hooke’s Law. The initial load cycle may be conceived as a consolidation plus 

elastic compression, AB, followed by an elastic recovery, BC. Equation B-8 is 

an expression for recovery from the theory of elasticity. 
(23 ) 

Where 

P 

P= bearing pressure 

E q soil modulus of elasticity 

A= area of load bearing plate 

c= dimensionless coefficient dependent 

on plate shape 

7)= Poissons ratio of the soil 

(B-8) 
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P- Beating Pressure - 

Figure B- 2 PRESSURE-SINKAGE CHARACTERISTICS 
OF SOIL ACCORDING TO ASSUR 

Figure B -3 SOlL RESPONSE TO REPETITIVE LOADING 
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Table B-I presents values of the coefficient C related to bearing plate geometry. 

Table B- I. VALUES FOR C FOR EQUATION B-8 

PLATE GEOMETRY 

Circle 

Square 

Rectangle 
(length to width ratio) 

3/2 
2 

3 

5 
IO 

PLATE CONDITION 

Rigid Flexible 

I. 13 I. 04 

I. 08 1.06 

1.09 1.07 
I. IO 1.09 

I. 15 I. I3 

I. 24 I. 22 
I.41 I.41 

Since $fl (Z) is a force equal to P times A, it has the following form: 

Consolidation and Elastic Compression 

gl (Z) for ftuidization is K,ZA I 
[ - (KsZ/Pm)2 + 2 (KS Z/Pm)4 + 

or for compaction is KS ZA/( I - Z2/Zi) 

or for collapse is KS ZA/( I + Z2/ 2;) 

Elastic Recovery 

$1 G3 = CEZ m 

(I -ti2) 

. . . 1 (B-9) 

(B-IO) 

(B-11) 

(B- 12) 
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. 
B. 2 The Function $2 (Z ) 

. 
An expression for g2 (Z ) of Equation B- I has been obtained from a model 

illustrated in Figure B-4 consisting of a vibrating disc in surface contact with an 

elastic, homogenous, isotropic, semi-infinite medium. Although this theoretical 

model is ideally elastic, radiation damping exists since energy is transported from 

the disturbance source throughout the medium via pressure waves and unavailable 

for resonant re-enforcement of the disc motion. This model contains no internal 

Figure B-4 WEIGHTLESS RIGID DISC 
SUPPORTED BY ELASTIC M EDI UM 

damping which,is related to the friction between soil particles or the process of 

soil shear. Experimental evidence indicates friction or shear is expressed by the 

hysteresis in the stress-strain cycle 
(24) (25) (26) 

. Since hysteresis is believed to 

be adequately accounted for by the form selected for gl (Z), no attempt is made 

to include this effect in $2 (Z). 
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The above model has been the basis for the analytical study of vibrating 

foundations. The theory dates from the work of Reissner (27) , 1936. A more recent 

development is accredited to Sung (28) , Bycroft(29), Hsieh(30) and Lysmer(“). 

The brief summary which follows is due to Hsieh (30) , and Hall and Richart 
(24) . 

The vertical displacement Z of a weightless rigid disc resting upon an elastic 

semi-infinite medium and submitted to a periodic force F = F, e iGit (see Figure 

B-4) is given by: 

where 

z= - 
FO 

1 
f, + i f2 eiWt 

G ro 
1 

Z = displacement 

F, = amplitude of periodic force 

G= E/2(1 -CD)= shear modulus of medium 

fl; f2= dimensionless functions dependent on Poissons ratiol) and a0 

r 
0= 

a0 q 

Q= 

W= 

disc radius (for circular disk) 

dimensionless quantity - 0 r. Am 

mass density of medium 

forcing frequency (radians/set) 

Differentiating Equation B-9 with respect to time yields 

z= - z’p [ifI-f2]eiwt 

0 

Equations B- I3 and B- I4 may be combined to yield: 

(B- 13) 

(B- 14) 

WZfl-Zf2 =- (JGFP [ff + fz]e i*t = -$+-[fT + fg] 

0 0 
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and therefore, 

Gr 
F= + 0 

w [f; :2f; ] ;-,,[ f; :I f2’ ] z 
Setting F2 = f2 and Fl = - 

fl 

(f: + fs >a, 

F=dvrz F2 Z + GroFIZ= R, (B- 18) 

where R, is the reaction of the elastic medium. 

Bycroft’s calculated results for f I and f2 related to Roissons ratio’l) and 

a0 = W r. d?F are presented in Figure B-5. From these graphs, Hsieh has 

determined approximations for F t and F2 sufficiently accurate for practical calcu- 

lations. These expressions are: 

Fl= co-claz F2 = bo + b I Oo (B- 19) 

where the values for the coefficients co, c I’ bo, and b, are contained in 

Table B-2. 

At w = 0, a, is zero and the second term of Equation B-18 is the elastic 

reaction to a rigid disc under static load. From Table B-l, C = I. I3 = 2/m 

for a circular plate and therefore 

B, (a = 2 EZG? 2r02(l +I))GZ 4Gr, Z 

(elastic) ~ (I - ’ 2)- (l - ~ 2, = (I - ‘) 

Thus Fl = 4/( I -d) for a, = 0 which agrees with Hsieh’s numerical values 

tabulated in Table B-2. Therefore co = 4/( I -7)). 
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0.16 
01 - 
. 

,- 
0.12 

0.08 

O.OA 

0 
0 0.2 0.4 0.6 0.8 1 .o 1.2 1.A 1.6 

Figure B-5 BYCROFT’S DISPLACEMENT FUNCTION 

VIBRATING RIGID DISC SUPPORTED BY ELASTIC MEDIUM 

(Ref 32) 
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I Table B-2. HSIEH’S VALUES FOR F l,J2 

Fl = co-c,az 

F2 = bo + bl a0 

POISSONS RATIO Fl 

-3 C 
0 cl 

0 4.0 0.5 

l/4 5.3 1.0 

l/2 8.0 2.0 

F2 

b. b, 

3.3 0.4 

4.4 0.8 

6.9 0 

Hsieh’s expression for F l is of the form co - cl a: where co = 4/( I-2)) 

and ad w r. 1l?/G’. Substituting these values into Equation B- I8 yields: 

r:F2Z +Gr, 
clW2r2q 

G 
Z= F (B-2 I ) 

. . 
Noting for a periodic motion of frequency @ that Z = - &J 2 Z Equation B-2 I 

can be rewritten as: 

(clQrz) ;’ +?rd-i;rz F2 Z + (s)Z a F (B-22 ) 

The term cl f r: in Equation B-22 appears as an effective mass for the soil 

and represents a retardation to disc motion related to the inertia of soil in proxi- 

mity to the disc. 
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Accepting a correspondence between soil reaction to the vibration of a 

foundation footing (disc) and soil reaction to the dynamic motion of a vehicle 

wheel, expressions for p2 (2) and soil effective mass me from Equation B-22 are: 

SO1 L REACTI ON 

FUNCTION 

a, (S * 

SOIL EFFECTIVE 
MASS 

me 

RADIATION (B-23) 
DAMPING 

$b, + bl a4x7 ; 

INERTIA 

3/2 

c It(+) 

(B-24) 

For wheel-soil interaction, the surface contact dimension r. of the disc theory 

has been generalized to CA/~] 1’2. The factor b, + bt a0 is the Hsieh repre- 

sentation of F2 where the coefficients b, and bt are dependent on Poissons ratio L). 

It is seen that p12 (Z) varies with the frequency of wheel motion through the para- 

meter ao. For most applications, however, it can be shown that the product bt a0 

may be neglected with respect to the value b,. For example, at the wheel resonance 

of a typical vehicle (IO cps), 

b, a, = f$-$ = IO cycle x 2n x 20 cm x 0.8 = o 2. 

set cycle 5000 cm/set ’ 

In this case for values of b. from Table B-2, bl a0 <<b. . 

8.3 Assembling the Model 

The various terms can now be collected and substituted into a form of 

Equation B-l modified by the existence of a soil effective mass (Relation B-24). 
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. . . 

m,Z + C,Z -h $(Z, Zmax)Z=Fv (B-25) 

The form of Equation B-25 is similar to a mass-spring-damper system as shown 

in Figure B-6. 

9 f&Z max.) Cs 

I ///I//////, 

Figure B-6 SOIL MODEL 

The soil “spring rate” $(Z, Zmax) is a complex non-linear function which in-. 

eludes hysteresis and the effects of soil shear. The “damper” has the form of 

a linear “viscous” damping coefficient and represents the energy dissipation due 

to radiation damping from elastic theory. 

The procedure for determining $(Z, Zmax), C, and me for simulation in 

an analog computer model is summarized on the following page. Information on 

properties of earth soils E, zJ, Q f rom Reference 23 is presented in Tables B-3, 

B-4, and B-5. Values for KS and Z, or Pm are normally obtained from standard 

plate penetrometer measurements of soil which record sinkage versus pressure, 

plate shape and size 
(21) (33) 

. In the case of extraterrestrial studies, it might 

be desirable at the present time to assign a range of arbitrary values and note 

the effect on computer prediction of 
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I - 

SUMMARY OF PROCEDURE 

STEP 

I. Select Vehicle-Soil Footprint 
(Area A) 

2. Select Coefficient “C” 

3. Compute $ (Z, Zmax)= ‘izo (Recovery) 

4. Compute $ (Z , Zmax)= PI (‘) 
Z 

(Consol i - 
dation) 

5. Select Coefficients b,, b, 

6. Compute C, = 
a;! (Z> 

Z 

7. Select Coefficient c, 

8. Compute me 

Soil Property 

Required 

----- 

----m 

E, V 

KS, Z,, or P m 

V 

Reference 

mm--- 

Table B-l 

Equation B- I2 

Equation B-9, B-IO 

orB-II 

Table B-2 

Et% f’ Equation B-23 

‘1) Table B-2 

Equation B-24 

Table B-3. YOUNG’S MODULUS E 

I SAND 

;(G rain size, mm) 
E 2* 

kg/cm I SOIL TYPE 

E 

k g/cm2 
* 

1.25 - 1.55 450 Plastic Silty Clay with Sand 

1.00 - 1.25 520 

I 
Saturated Silty Clay with Sand 

0.60 - 0.80 620 ! Dense Silty Clay with Sand 

0.35 - 0.60 480 / Medium Moist Sand 

0.30 - 0.35 480 

0.20 0.30 620 

1 Gray Sand with Gravel 

- 1 
! 

Fine Saturated Sand 
Medium Sand 

I 
I 

Loess 

/ I Loessial Soil 
1 ~.. _ _ I 

* Tabulated data and units are from Reference 23. 
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440 

2950 

540 
540 

850 
830 

1000 - 1300 
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Table B-4. POISSONS RATIO ZJ 

Clay .50 

Clay with 30% Sand .42 

Sand .30 to .35 

Table B-5. DENSITY c 

SOIL TYPE kg sec2/cm4 

x 10-6 * 

SOIL TYPE kg sec2/ cm4 

x IO-6* 

r oist Clay 1.80 Fine Grained Sand I.65 

Loess (Natural Moisture) 1.67 Medium Grained Sand I.65 

Dense Sand and Gravel 1.70 Medium Sized Gravel 1.80 

* Tabulated data and units are from Reference 23. 

108 



APPENDIX C 

VEHICLE MODELING 
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VEHICLE MODELING 

By: J. M. Sneyd 

c. 1 Introduction 

The traditional technique for the mathematical representation of a vehicle and its 

suspension system is to use a lumped rigid mass model with visco-elastic interconnections 

between the elements. At best, the model is an approximation of the physical system; 

this is due either to the shortcomings of the mathematics employed or the limitations im- 

posed due to computing equipment. In establishing a model the above limitations must 

be kept in mind. To serve its purpose, however, the model must characterize the import- 

ant features of the various motions and their intercouplings. 

c.2 Requirements of the Mathematical Model 

The investigation of the limiting conditions dictate that the model must at least 

include vertical translation, roll and pitch rotations for the vehicle body. From the 

standpoint of the vehicle model, it will be assumed that only a point contact exists at 

the wheel-surface interface. In references 34 and 35 it has been shown that under some 

conditions of speed and number of wheels a point contact is a valid assumption. The models 

chosen for examples of modeling techniques will be of two types; a solid axle model and an 

independently suspended model. Two variations for the independently suspended wheel are 

also considered; one with a trailing arm and one with a lateral arm. 
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Since the gross motions are the main concern the vehicle body is taken as a 

rigid frame. Articulated vehicle bodies have been mentioned in much of the litera- 

ture. Although these body types are not considered here, the techniques discussed may 

be easily extended to include these configurations. 

C. 3 Approach to Derivations 

The equations of motion for the various mass elements making up the vehicle 

system will be derived through Newton’s second law (F = ma). lntercoordinate trans- 

formations for successive rotations will be defined in terms of Eulerian angles, using 

matrix notations for simplicity. First, a general case will be considered, then several 

example configurations will be discussed, followed by some considerations for simplifi- 

cation and linearization. 

c.4 General Case 

A six dimensional (three translation and three rotation) right hand Cartesian co- 

ordinate system is employed. The space fixed system (X, Y, Z ) has the X axis horizontal 

with the positive direction along the vehicle body (statically) pointing to the rear. The Y 

axis is vertical with the positive direction upward, and the Z axis is perpendicular to the 

other two with the positive direction to the left of the vehicle. The body or mass fixed 

systems (lj ,g , /1 ) in the undisturbed condition has the ( 
f 

) axis parallel to the X axis, 

the (7) axis parallel to the Y axis and the (4) axis parallel to the Z axis. The trans- 

formation equotions between space ond body fixed are written with the order of roto- 

tions being yaw (angle $), pitch angle $J>, and roll (angle 8) from the space fixed to 

the mass fixed coordinates (See Figure C-l ). 
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Figure C-l ANGULAR ORIENTATION BETWEEN SPACE FIXED 

AND ROTATING COORDINATE SYSTEMS 
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The transformation matrix is given in Equation C-l 

X ca’cw - ca’sp + sa’se Ca’SljJ se + spxl 
5 

Y = sl+J CQJ ce -cl+Jse 5 (C-1 ) 

Z -sWtJ sgslgce + cJasf3 - !$a sl./ se + cp3 r? 

Where C has been written for cosine and S has been used for sine. Let SOrepresent 

the space fixed vector (column matrix), B represent the mass fixed vector, and (M) 

be the transformation matrix. Equation C-l can then be reduced to Equation C-2. 

So= (M) B (C-2 1 

The components of angular velocity about the mass centered coordinates are defined 

in Equation C-3. 

3 
q e+jisljJ 

L.+ = gqJce+ (Jse 

ci+ =- $qJse+ (Jce 

(C-3 1 

A set of equations such as Equations C-2 and C-3 can be written for each mass element 

in the system. If each mass element is considered to have complete freedom of motion 

then transformations (and angular velocities) for each mass can be denoted by equations 

similar to C-2 (and C-3 ), with the addition of subscripts, for example 

s, = (M, ) B, (C-4 1 

where (M,) has the same functional relationship as shown in Equation C-I with a 

different angular measure. The transformation equations (Equations C-2 and C-4 ) 
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define the spatial orientation of each mass centered coordinate system. Since the 

space fixed system for each mass element is taken as parallel, the orientation of one 

mass centered system with respect to another is determined by equating the two; 

(M)B =(M,Ml (C-5 ) 

or this may be written 

B z(M)-‘(M, )B, (C-6 1 

where (M )- ’ indicates the inverse, or since this is an orthogonal transformation, the 

transpose of (M ). 

Forces and moments between the various mass elements depend upon the rela- 

tive displacements (for spring or stiffness elements) or velocities (for damping elements) 

at the attachment points in each mass element. Stiffness elements that are not coy 

linear with their centers of mass are affected by some component of the angular velocity 

or angular displacement. For these stiffness elements the relative velocities at the 

extremities must be used to determine the forces generated (angular displacements are 

not commutative). The total space fixed velocity of a point in a mass element is 

ia = So+ (W) r (C-7 ) 

where Sa is the total space fixed velocity of point a in the vehicle body, SOis the 

column matrix of the space fixed translational velocity at the center of gravity, (W ) 

is the angular velocity matrix (defined in Equation C-8 ), and r is the radius vector 

from the center of gravity to the point a. 
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The opposite end of the stiffness element (one end of which is attached to the body 

at point a) at point 0~ in another mass centered system (subscript 1 ), has a total 

space fixed velocity given by Equation C-9. 

s, = ;I+ (WI) r, 

The difference (Equation C-7 minus Equation C-9 ) is the total space fixed velocity 

of end one with respect to end two of the stiffness element. Transforming this dif- 

ference into mass centered coordinates and pre-multiplying by a stiffness matrix of 

the form 

K = 

% O 0 

0 CS 0 

0 0 % 

(C-8 ) 

(C-9 1 

(C- 10 ) 

determines the mass centered force components in the three orthogonal directions. 

F= K(M )-’ (;, - s, ) (C-11 ) 

Moments about the mass centered coordinate system are found by pre-multiplying by 

a position matrix as given in Equation C-12 . (The position matrix is formed in a 

manner analogous to the angular velocity matrix C-8 ). 
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This gives for the moments about the mass centered system 

0 -‘a Ya 

r a = ‘a 0 ‘xa 

Y 
a -‘a 0 

(C- 12 ) 

T = ‘a F (C-13) 

In the above treatment the implicit assumption has been made that during the 

deflections the stiffness elements remain parallel to their static orientations. For 

rather small deflections this assumption holds, but if relative deflections between the 

various mass elements are large this assumption becomes invalid. Also, each mass 

-element is considered to have freedom of motion in all axes. In those instances where 

the motion of a mass element is linearly related to the motion of another mass element, 

a constraining equation can be written. Each equation of constraint reduces by one 

the number of degrees of freedom for the total system. 

In the following sections different versions of the “typical” vehicle will be 

examined to indicate how these techniques can be applied. 

C.5 Solid Axle Model 

A rigid framed vehicle with four wheels and two solid axles is now consid- 

ered. Attention is confined to motions in the X, Y plane making the assumption that 

the yaw and lateral translations are zero. Figure C-2 is a skeleton drawing showing 

only spring stiffness elements. Stiffness elements attached to the vehicle body at points 

a, b, c, and d and to the two axles at points o(, 
P 

, , and 6 are shown as the body 
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Figure C=2 SCHEMATIC OF SOLID AXLE VEHICLE MODEL 
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suspension system. The wheel rates are represented by stiffnesses connecting the hub 

of each wheel to the surface. Also indicated in the figure are the various coordinate 

systems (i . e . , spaced fixed and mass centered systems). It is assumed that the stiffness 

elements are attached to the two axles in such a way that moments about the roll and 

pitch axes are zero. These assumptions reduce the number of degrees of freedom to seven: 

body vertical translations, body roll, body pitch, plus vertical translation and roll for 

each axle. The transformation matrices for the three moss elements are given in 

‘n 

‘n 
= 

‘n 

Equation C- 14. 

C’tJ 

St 

0 

-swl 

‘W “n 

% 

n = I, 2, 3 

where yaw has been assumed to be zero. 

‘i’ “n 

- cy se, 

‘On 

(C- 14 ) 

The orientation between the axle mass systems and the body mass centered system 

is given in Equation C- I5 

0 0 

c (emBe,) -stem - aI > 

s tern -8,) W, -0, > 

m z2, 3 

The angular velocities about the body mass centered system are given n Equation C- I6 

(C- 15 ) 

9’ q p, (C- 16 ) 
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The axles have rotational freedom about the roll axis only. The angular velocities about 

the pitch and yaw axes are related to the body mass as shown in Equation C-15 

mTrn = w4, w,-8,) + +, w,-8,) 

Oqm - --+I s(e, - 8,) + mql w, - a,) 

(C- 17) 

m= 2,3 

From this set of defining equations (Equations C- I4 through C- 17) the forces and moments 

acting on each mass element can be derived. Equating these forces and moments to the 

inertial forces establishes a set of seven simultaneous second order differential equations. 

C.6 Independent Suspension Systems 

A sketch of the left front wheel and accompanying suspension system is shown 

in Figure C-3. For this model lateral translations and yaw rotations are again taken to 

be zero, and the wheel is assumed to have freedom only in the roll direction (rotation 

about the 
f 

axis). Allowing the vehicle body to have freedom in vertical translation, 

roll, pitch rotations, and each wheel in roll only, results in a seven degree of freedom 

system. The differential equations for this system are similar to those for the solid axle 

model with the additional condition that the motion at the wheel pivot point (point b in 

Figure C-3 ) is constrained. This constraining equation is written by equating the total 

space fixed displacement of point b as measured in the body centered system to that 

measured in the wheel centered system (Equation C-18). 

il + WI) rl = i2 + (W,) r2 (C- ‘8) 
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Figure C-3 SCHEMATIC OF A TYPICAL INDEPENDENTLY 

SUSPENDED WHEEL 
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where in is the space fixed translational velocity, (W, ) is the angular velocity matrix, 

and rn is the radius vector from the center of gravity to the pivot point. 

A second example of an independently suspended wheel is shown in Figure C-4. 

Here there is a trailing arm suspension, providing freedom of rotation of the wheel mass 

about the pitch axis. If the order of the successive rotations are held in deriving the 

Eulerian angles (that is yaw, pitch, then roll ), then the defining equations for the 

coordinate transformations are given’in Equation C- I9 . 

‘n 

‘n 

Z 
n 

q 

Qt’W/iJ) cWs(Wn-V) syse 

-s$Js (Wn - 13) ca s~c(+‘n-+‘)ce 

sL3c(tttn-Y) -Slt’w’Jn-$J) -qsa 

tcys(yn-y)ca cvc(v.-$J)ca 

s($J,-v)sa c(yn-y)Sa ca 

5 n 

Yn (C- ‘9 ) 

‘In 

In the above equation yaw angle has been taken as zero; the defining transformations 

between body mass centered and wheel mass centered coordinate systems is shown in 

Equation C-20. 

5 
9 = 
4! 

c(Wn-V) 

‘(Yn- W) 

0 

-s(‘jn-‘f’) 

c(Vn-W) 

0 

0 
F n 

0 
4 (C-20 ) 

I q:: 
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Figure C-4 SCHEMATIC OF A TYPICAL TRAILING ARM 

INDEPENDENTLY SUSPENDED WHEEL 
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The angular velocities about the body centered system (Equation C-21) 

wj q ipa (C-2’ > 

are related to the angular velocities about the wheel centered systems through Equation 

C-20 which are equations of constraint. This gives 

W% f q a c(Wn - W) -I- w5s ( $‘n - ‘#> 

usn =-W~S(Wn-Lt))+Cc)5C(Wn-W) 

(C-22 ) 

fo.e the rotational motions. 

In all cases the equations of motion, translation and rotation, have been written 

about the center of mass of each element. In the case of the independently suspended 

wheels the center of mass does not coincide with the center of rotation, so that care 

must be taken to define the moment of inertia for each wheel mass in the proper context. 

A recommended method of analysis is to use Lagrangian mechanics. 

c.7 Simplification of the System of Equations 

The models that have been discussed each represents a simplified description of the 

vehicle suspension system, yet the programming and solution is difficult. It is, therefore, 

of interest to investigate further simplifications or linearizations to produce a more tract- 

able problem. Perhaps the most justifiable simplification is in the rotational freedom of 

the wheel masses. The defining equations for the wheel rotational motion include terms 
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in which the difference in two angles appear, such as the difference between the body 

roll and the wheel or axle roll. This angular difference can be linearized (small angle 

assumption) on the basis that the suspension system has but a limited range of free travel. 

For the independent suspension this can be carried further, approximating the small 

rotational motion by translational motion (such as the linear approach to the simple 

pendulum). Linearizations of the vehicle body rotational motion can only be justified 

for low amplitude input functions and/or for certain types of inputs. For a deterministic 

input the magnitude of the response may be approximated prior to solution in the same 

fashion that an analog problem is scaled. 

Another simplifying approach that may be taken as an “initial investigation” is 

a two dimensional model. lf a symmetric vehicle body is assumed, roll and pitch motions 

are uncoupled and the bsehicle motion in bounce and pitch con be studied with a “bicycle 

mode I ‘I, or bounce and roll investigations made with a “two wheeled cart model ‘I. 

In establishing the degree of sophistication for the vehicle model, the particular 

dynamic characteristics under study, the type of input, and the kind of computing equip- 

ment to be used must be considered, 

C.8 Linear n-Wheeled Vehicle and Yielding Surface Model 

For the purpose of illustration, equations of motion and an analog computer circuit 

are presented for a typical n-wheel rigid body vehicle where the body axes are assumed 

to be principle axes of inertia. The wheels are represented by the axle-hub mass (mwi ) 

and a rim mass (m,i). The rim masses are in contact with a yielding surface represented 

by the effective soil mass (msi ). The surface profile is inserted between the soil and the 

rim. i A mass (mf) is attached to the body by a spring and a damper which may represent : 
I 

124 



a piece of on-board equipment that could be used as a vibration damper. Equations 

C-23 through C-28 are the equations of motion for this model and the symbols are 

defined in Table C-l. 

Body Vertical 

. . n 
mY =- 

n 
I ’ 

ksi (Y + Xki ‘+‘- Zki 8 - Ywi) + Csi (i’ + xci (J - zci 6 - ywi )] 

q 

. . . 

-mg-kf(Y+Xk~-Zk8-Yf)-Cf(Y +xcIt)-zC~-Yf) 

(C-23) 

Body Roll 
n . . 

I,8 = 
T[ 

Zki kSi (Y + Xki v - Zki a - Ywi) •C Zci Csi (i -C Xci (J - zci e - YWi,] 

iTI 

+Zkkf[Y+Xk~-Zke-Yf]+zcCf[~+xc~-zc~ -if] 
(C-24) 

Body Pitch 

ki ksi (Y -C Xki W - Zki O-Ywi) + Xci Csi (; + Xci W - Zci ;, - Y,i)] 

7 

-xkkf[Y+Xk+zk g-Yf]-XcCf[Y+xc$-z,&f] 
(C-25) 

Vibration Damper-Body Mounted-Vertical 
. . 

mfYf= kf [Y + Xk t./ - Zk 8 - Yf] + Cf [Y + Xc b - Zc e - Yf] - mf g (C-26) 

Typical ith Wheel Vertical 

.;’ mWl wi = - kwi [‘wi - ‘ri]- cwi [{wi - ;ri] + ksi [Y + Xki y - Zki 8 - ywi] 

. 

+Csi i +X,iW-Z,ie-i,i] -lTl,ig [ 

-. 
Typical ith Rim Vertical 

(C-27) 

mri Yri 
. . 

= - kwi [Ywi - Yri]+ cwi [Ywi - Yri]- mri g - kri [Yri - (Ypi + Ysi,] (C-28) 

Equivalent Soil Mass at t ‘th Wheel Vertical 

. . 

msi ‘5.i = B ysi - Cs isi + kri [Yri - (‘fpi + Ysi 1 (C-29 ) 
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Table C-I LIST OF SYMBOLS FOR GENERAL EQUATIONS OF MOTION 

OF AN INDEPENDENTLY SUSPENDED VEHICLE WITH N-WHEELS 

ON YIELDING SOIL. 

m 

u, i, Y 

k. 
sl 

csj 

Xki’ ‘ki 

Xcjr ‘ci 

I I 
X’ z 

n 

mwi 

k . 
WI 

‘wi 

mri 

Sprung mass of the vehicle 

Vertical motion of the c.g. of the sprung mass of the vehicle 

in acceleration, velocity, and displacement. 

.th Suspension spring constant connecting the t wheel to the 

vehicle. 

Suspension damping constant connecting the ith wheel to the 

vehicle. 

Distances from mass center of vehicle to the point of connection 

between I .th wheel suspension component (K - spring , C-damper) 

and the vehicle. They carry with them the sign as determined 

from the body fixed axes. 

Pitch acceleration, Pitch velocity, and Pitch displacement of the 

vehicle, respectively. 

Roll acceleration, roll velocity, and roll displacement of the 

vehicle, respectively. 

Mass moments of inertia of the sprung mass about the roll and pitch 

axes, respectively. 

Number of wheels on the vehicle. 

The ith wheel center acceleration, velocity and displacement. 

Mass of the ith wheel 

.th 
Wheel spring constant for the I wheel. 

Wheel damping constant for the ith wheel. 

Mass of the rim in contact with the soil for the ith wheel. 

Vertical acceleration, velocity, and displacement of rim 

mass connected to the t ath whee I. 
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Table C-l (CONT.) 

msi 

CS 

k. 
rl 

Vertical acceleration, velocity, and displacement of the 

soil under the t eth wheel. 

The effective mass of the soil under the ith wheel. 

Soi I damping constant 

An imaginary spring rate between rim mass and the soil mass under 

the ith wheel which has the property, 

9 

Id 

‘Pi 

k.- 

0 if Yri2 Ypi + Y.-i 

rl - 
coif Yri ’ Ypi + ysi 

Gravitational constant determined by where the vehicle is located. 

Non-linear spring constant in soil model (See Appendix 8). 

Profile height under the ith wheel 

In this model angular motions have been linearized. The included non-linearities 

are the lift-off capability of the rim mass and the non-linear soil model of Appendix B. 

For the purpose of analog simulation it has been assumed here that the consolidation phase 

of soil response is represented by the linear coefficient of sub-grade reaction Ks. Function 

generators can be used in place of the potentiometers if actual loading curves are avail- 

able for the soil in question (See Appendix B). The effects of the linear consolidation 

soil rate KS and elastic recovery spring constant k, in Equation C-29 are given in Equa- 

tion C-30. 

msi ;;si = - KS Ysi - Cs Ysi + kri [Yri - (Ypi + Ysi d - (ks - kS) (Ysi - Ysi max) (C-30) 

where Y si max is the time dependent maximum deflection that the soil under the l ‘th wheel 

has experienced due to the loading of the ith and preceding wheels. The subscript “max” 

as used here is defined in Equation C-3 I. 
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y’ e- 2 Vt’/’ R. 
I for Y <Ymax 

Y max = 

(C-31) 

Y otherwise 

where Y’ is the latest value for which Y c Y max and t’ is a time measure which is reset 

to zero whenever Y’ takes on a new value. The vehicle velocity and the wheel radius 

are represented by V and Ri respectfully. .th The maximum soil deflection at the I wheel 

is defined in the following manner. 

I max (C-32) 

where ‘sk max is the properly time delayed maximum soil deflection due to the preceding 

in-line kth wheel. 

Figures C-50 and C-5b show an analog computer network for simulation of the general 

n-wheeled vehicle model without the body mounted vibration damper. Figure C-50 is the 

network for the three degrees of freedom (vertical pitch, and roll) of the vehicle body with 

inputs from each of the n-wheels. Figure C-5b is a typical .th 1 wheel computer network which 

must be repeated n times for the n-wheels with appropriate coefficients and time delays. 

While this vehicle model is linear it is possible to easily incorporate non-linearities of 

wheel travel limits with diodes around the appropriate amplifiers, or non-linearities of spring 

rates and damping coefficients with diode function generators replacing the appropriate 

potentiometers. 

C. 9 MOlAB Concept Model 

A simple MOLAB C oncept model was chosen to implement and demonstrote techniques. 

The same model was previously used for analysis to step input JT4) and is based on the early 

conceptional MOLAB drawing made by NASA-MSFC shown in Figure C-6. A schematic 
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Figure C-50 GENERAL “n” WHEELED VEHICLE BODY COMPUTER CIRCUIT 
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Figure C-Sb COMPUTER CIRCUIT FOR jth VHEEL AND SOIL 
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Figure C-6 MOLAB CONCEPT II 
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model for analysis based on the conceptional drawing is shown in Figure C-7. This model 

is a rigid body model with four independently suspended wheels that have identical coef- 

ficients. The values for the physical constants used in model analysis are shown in Table 

c-2. 

Appendix D gives the results of a linear frequency domain analysis of this model on 

a non-yielding soi I, where vehicle-surface separation was not allowed. Three different 

versions were investigated and compared: 

I. Independent suspension 

2. Independent suspension with on-board 

vibration damper. 

3. solid axle suspension. 

Table C-3 gives the list of changes and additions to the physical constants of Table C-2 

which were used for the analysis with an on-board vibration damper. 

Appendix E gives the results of a non-linear time domain analysis of this model 

using on onalog computer with white noise input. The ‘equations of motion (Equations 

C-23 through C-32) were modified to represent the MOLAB model and the analog computer 

circuit was implemented from the circuit shown in Figures C-50 and C-5b. Table C-4 lists 

the physical constants for the yielding soil simulation. The time domain analysis included 

the effects of both yielding and non-yielding soil effects and in each case vehicle-surface 

separation was permitted and measured. 
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Figure C-7 SCHEMATIC MODEL OF VEHICLE 

USED FOR NON-YIELDING SURFACE 
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Table C-2 PHYSICAL CONSTANTS FOR MOLAB VEHICLE 

Symbol Description 
Value 

M. K. S. Units 

m 

‘x 

‘z 

m 
w i 

k . 
sl 

‘si 

k 
w i 

“wi 

X 
5.1 

xs3 

2950 kilograms 

r 
3 I45 kilograms (meters)l 

r 
6240 kilograms (meters)L 

22.8 kilograms 

29200 newtons/meter 

700 newton set ./meter 

78 100 newton/meter 

35 newton sec./meter 

z- 
sl 

Body Mass 

Roll moment of inertia 

Pitch moment of inertia 

Wheel mass 

Suspension spring rate 

Suspension damping 

Wheel spring rate 

Wheel damping 

Distance C. G. to front 

Distance C. G. to rear 

Distance C.G. to side 

I. 27 meters 

I. 32 meters 

I. 75 meters 

Value 

English Units 

202 slugs 

2320 slugs (ft)2 

4600 slugs (ft)2 

I. 87 slugs 

2000 pou nds/ft . 

48 pounds sec./ft. 

5350 pounds/ft . 

2.4 pound sec./ft. 

4. I7 ft. 

4.33 ft. 

5.57 ft. 
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Table C-3 CHANGES AND ADDITIONS TO TABLE C- 2 
FOR ON-BOARD VIBRATION DAMPER 

Symbol Description 

Value 

M. K. S. Units 

Value 

English Units 

m 

mf 

I 
X 

‘Z 

k f 

c f 

Xf 

=f 

Body mass 

Vibration damper mass 

Body roll moment of inertia 

Body pitch moment of inertia 

Spring rate vibration damper 

Damping constant vibration 

damper 

Distance of vibration damper 

behind body C.G. 

Distance of vibration damper 

to the left of body C.G. 

2723 kilograms 

226 kilograms 

2965 kilograms (meters)’ 

5862 kilograms (meters)2 

895272 newtons/meter 

70 newtons sec./meter 

I. 5 meters 

0.7 meters 

186.48 slugs 

15.48 slugs 

2 ‘87 slugs (ft)2 

4324 slugs (ft)2 

6 I, 320 pounds/ft 

4.8 pounds sec./ft . 

5.0 ft. 

2.5 ft. 

Table C- 4 PHYSICAL CONSTANTS FOR YIELDING SOIL SIMULATION 

Value Value 
Symbol Description M. K. 5. Units English Units 

kS Elastic recovery spring rate 

of soil 328600 newton/meter 22533 pounds/ft . 

KS 
Coefficient of subgrade 

reaction 16439 newton/meter 1127 pounds/ft 

CS 
Damping coefficient 

of soil 

Effective soil mass 

Rim mass of wheel 

Radius of wheel 

3263 newton set ./meter 

10 kilograms 

7 kilograms 

0.7 meter 

224 pounds sec./ft . 

m 
S 

mri 

Ri 

0.686 slugs 

0.48 slugs 

2.5 ft. 
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FREQUENCY DOMAIN ANALYSIS 

By: J. M. Sneyd and R. G. Gergle 

D. I Introduction 

Equations of motion were derived for a general n-wheeled vehicle model in Appendix C 

and a specific four wheeled independent suspension model was described. In this appendix a 

linear version of this model is analyzed using a frequency domain approach. The differential 

equations of motion are converted to algebraic complex number equations via the Fourier trans- 

form and transfer functions are obtained on a digital computer. These transfer functions are 

combined, by the superposition theorem to predict the system response to random signal inputs. 

It is shown that for inputs (in this case lunar surface profiles) which can be statistically character- 

ized by a power spectral density, the system response con be statisticolly analyzed and a predict- 

ion of the probability of exceeding limiting conditions can be made. 

D.2 Description of Linearized Model 

A schematic drawing of the vehicle is discussed in Appendix C. The total sprung mass 

is made up of the vehicle body mass and the mass of an on-board vibration damper, say the fuel 

cell. The fuel cell is attached to the body by a spring and damper. The body mass is assumed 

to hove three degrees of freedom: vertical translation (bounce), roll and pitch rotations. The 

fuel cell is restricted to vertical translation, as are each of the wheels. The suspension springs 

and dampers have been assumed to be co-linear with the center of gravity of the wheel masses: 

the same is true for the springs and dampers representing the wheels. 

The equations of motion for this eight degree of freedom system are given below as 

Equations D-I through D-8. The notation employed in these equations is as follows: Subscripts 
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ml (VI) = - Kl 
[ 

WI) + (X,)1& l) - (zl)l (0,) - (Y2)] 

- K2 + (Xl)2(‘# ,) - Gl)2@) - U,) 1 
- Kg + (xl)3(L3 1> - (z,)3(~l) - 

- K4 + o(,)4(w 1) - @1)4@,) - (Y,)] 

- KS [(V -I- (x1pJ 1) - @,)9(q) - (Y9)l 
(D-1) 

[- 
. . 

- C’ VI) + V’),(W ‘1 - (Z’),@,) - G2)l 

. . 
- 5 0’) + (q2ojJ 1) - (Z1)2&+) - [’ b3)] 

c . . . . 
- c3 (Y ‘1 + o( $3 (4J 1) - (Z l)3@1) - (Y4) 

I 

[ 

. . . 
- c4 (Y 1) + (X l)4(Wj) - (Z 1)4@1) - &5)1 

[ 

. . 
- c9 WI) + o(l)9(W 1) - (Z’)9@‘) - (4 

I@’ 6,) = (Z’),K, pII + (XI)’ (Lt”) - (Z ,> ’ @,> - ty2)l 

+(z $2 5 w I) -I- (X $204 1) - (Z 42 (a,) - [ (y3)] 

(D-2) 

,) + W l)3 (13 l) - (z ,J3 (e,) - 

+ (Z $4 K4 
II 

(Y I) + (X l)4(+J 1) - (Z l)4@l) - ty5;l 

-I- (Z $9 Kg + (X1j9 (W 1) - (Z $9031) - (Y9J-J 
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[ 

. . 
+(zI)‘c’ (Y’) + (X’),(‘$,) - (Z,)l@,) - (y1;1 P-2) 

(Cont. ) 

+(zl)$3 (VI) r + 0(1)2(y1) - v~)2(~l) - (yg)] 

+ (Z,)3C3 
[ 
(VI) -1- (X1)3(&) - (Zl)3(bl) - (Y4ij 

+(q)4C4 (V,) + (X1)4(&) - (z,)4(81) - (Y5)] 
1 

+(q)9C9 (+,, + (Xl)&) - (Zl)9k+) - 
c 

4 

. . 
‘I# I w 1) = - <X$ & VI) + (XI)l($’ I) - @l)l(@l) -(Y,) I 

- Wl)2K2[(YI) -I- cx I)# I) - @1)2@‘) - W] 

- W3K3 
[ 

(yl) + (xl)3(yl) - (q3(e,) - (Y4)l 

- (Xl)4K4[(Y,) + (Xl)4 (‘j,) - (Zl)4(0,) - (Y,)] 

I - (X ,J9 Kg (Y I) + (X 1)94’1, - (z l)9u31) - (3) 

- (X,),Cl[&,) -I- cq r(Wl) - cq ‘6,) - (Y2)] 

(D-3) 

- w,)24+ + (X,)2i+Jl) - (Z ‘)2034 - &,)I 

-(X1)3C3 
[ 

(V,) + (X,)3(;t’,) - (Zl)3(~l) - (Y4J-j 

- (X,),C,[(v,) + (Xl)4QJl) - (Zl)4(Ql) - (Y5)] 

I’ 
. . 

- (X’)9 C9 (Y’) + 0(‘)9u#‘) - (Z ‘)9($) - (Y,) 1 

140 



. . 
m2 (Y2) = - Kl + (xl)l(yl) - (zl)l(el) - (Y2jl (D-4) 

- K5 - + 0$)&l) -(zl),(+ -(V,) 1 
- c5 

II 
(v,) - (;,,) 1 

(D-5 1 

. . 
m3 (Y3) = K2 C VI) + V,12U+V -(Zl)2(el) - (Y,)] 

- K6 (Y,) - V12)l + C2[(YI) + o(l)2 (iI) - (Z4& -($I] 

m4 (V4) q K3 
c 
WI) + (Xl)3(j’ l) - (Z l)3(@l) - (Y,) 

I (D-6 1 

- K7 (Yq) I - (Y l3ij + c3 b+ 1) + (X 1)3(Lj 1) - (Z l)3 6,) - (i4)l 

- c7 &,I - & 13) 
C 1 

m5 (V5) = K4 V I} + (X l)4($J ,) - (Z l)4(e I) - (Y5)] (D-7) 

- Kg 
c 
(Y5 - (Y l4] + c,pI) + (X 1)4(Wl) - (Z 1)4(&J - (i5,1 

- cf3 
[ 
(+5) - 

. . 
m9 0,) = K9 + (xi)9(yl) - (z&dy) - 

- c9 
r 
(;I) + (Xl)9(Ijl) - (Z 1)9(&J - (q 
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within the brackets denotes a mass centered coordinate system, subscripts outside the brackets 

denotes a dimension or a length from the mass center to a point in the mass element. For example 

(Y ,) is the vertical deflection of the body center of gravity and is a problem variable, while 

(Z ,)9 is the distance in the Z direction measured in the body centered system to the point of 

attachment of mass element 9, and is a constant. 

If the input functions (Y 1 I), (Y 14) are expressible in closed form, a solution to these 

equations could be obtained in a formal way by taking the Laplace transform, (with zero for 

the initial conditions) solving for the roots of the resulting polynomials and finding the inverse 

transforms. The Fourier transform may be obtained from the Laplace transform by setting s = ia, 

if the Fourier transform exists. (16) Th t e ransformed equations for this model are presented in 

matrix form, in Equation D-9 where A is the mechanical impedance. 

All 

A2l 

A31 

A4l 

A51 

A61 

A71 

A8l 

A13 

A23 

A 
33 

A43 

A53 

A63 

A73 

A83 

Ai4 

A24 

A 
34 

A44 
0 

Ai5 Al6 AI7 A18 

A25 A26 A27 A28 

A A A A 
35 36 37 38 

0 0 0 0 

A55 

0 

0 

0 

0 

A66 

0 

0 

0 

0 

A77 

0 

0 

0 

0 

A88 

The outputs and inputs are velocity column matrices. The mpedance matrix A is a 

yl 
. 

9 

6 . 

y2 
. 

y3 
. 

y4 
. 

y5 

y9 

q 

0 

0 

0 
. 

641 Yll 

B51 Y,2 
. 

B61 y,3 

B71$4 

0 

P-9 1 

symmetrical matrix defined by the relationship that A,, = A,,. 
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Equations D- 9-I through D- 9-30 define each intercoordinate impedance 

in terms of physical dimensions and quantities. 

A1l = ioml+C,+C2+C3+C4+C9 (D-9- I ) 

+p/iu][K, + K2 + K4+ K9] 

A,2 = - [ Cl (Z ,) I+ c2 (Z $2 + c3 (Z $3 + c4 (Z ,)4+ c9 (Z $91 (D-9-2 ) 

- LAW] [K, (Z 1) 1 + K2 (Z 1)2 + K3 (Z $3 + K4 (Z ,)4 + Kg (Z ,)9] 

Al3 = c 1 (X ,) , + c2 (X $2 + c3 (X $3 + c4 (X $4 + c9 (X ,& (D-9-3 ) 

+ b/ iti]LK, (X 1) 1 + 5 (X 1)~ + K3 (X $3 + K4 (X $4 + K9 (X,)9] 

A,4 q - c, -L!/ ibjci<J (D-9-4) 

A,5 = - c2 -[VicJ][K2] (D-9-5) 

Al6 q - c3 -[l/iw][K3] 
(D-9-6) 

A,7 = - C4-[I/icd][K4] (D-9-7) 

A18 z - c9 -[Viw) [K9] (D-9-8 > 

A22 = iw(lel) + Cl (Z,), (Z,), + C2 (Z&G+2 (D-9-9) 

+ c3 (Z $3 (Z ,)3 + c4 (Z ,)4(Z ,)4 + c9 (Z ,)$I (Z ,)9 

+ [l/iw][KI (Z,), (Zl), + K2 (Z1)2(Z1)2] 

+ L/i ti] [K3 (Z $3 (Z $3 + K4 (Z 1)4 (Z $4 + K9 (Z 1)9(Z 1)9] 
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A23 = - Cl (X 1) , (Z $1 + 3 w $2 (Z $2 (D-9- IO) 

+ c3 (X ,)3 (Z ,)3 + c4 (X $4 (Z $4 + c9 (X ,)9 (Z $9 

- E/iO][K, (X1),(Z1)l + K2 W,)2(Z1)2 + Kg (X,)3(Z1)3j 

+ [i/id[K4 W,)4(Z1)4 + $ 0(,)9@1)9] 

A24 q C, (Zl), + E/ickj[K, (Z,)l] 

A25 = C2 (Z ,I2 + E/ ia][K2 (Z 1)2] 

A26 = C3 (Z ,I3 +[l/iu][K3 (Z,)31 

A27 = C4 (Z 1)4 + k/iu][K4 @+41 

A28 q C9 (Z,)9 +[1/iLJl[K9 (Z1)9] 

A33 q 
iw(ly ,) + Cl (Xl), (Xl), + 5 (X1)2(X,)2 

+ c3 0(,)3(X,)3(X,)3 + c4 0(,)4(X,)4 + c9 (X,)9(X,)9 

+ [l/iu][KI (Xl), (x1)1 + 3 0(1)2(X,)2 + K3 (x1)3(x1)3] 

+ b/iti][K4 (X,)4(X,)4 + K9 (X,)9(X,)9] 

A34 q - c, (X,1, - E/IL.@, (X&j 

A35 = - 5 (X1)2 -E/i&J [K2 (X,)2] 

A36 = - c3 (X1)3 -p/i ti][K3 (X 1)3] 

A37 = - C4 (X1)4 -[Vi O][K4 (X,)4] 

(D-9- I I ) 

(D-9- 12) 

(D-9- 13) 

(D-9- 14) 

(D-9- 15) 

(D-9- 16) 

(D-9- 17) 

(D-9- 18) 

(D-9- 19) 

(D-9-20) 
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A38 = - 5 (X,)9 - E/i W][K9 (X,)9] 

A55 = 

A66 = 

A77 = 

A88 = 

B4’ q 

B5’ = 

‘6’ q 

B7’ = 

iLC)m2 + Cl + C5 +[l/iw][Kl + $1 

itim +$ +$ +[‘/iG)l[$ + K6] 

iG) m4 -CC3 + C7 +[‘/i c&K3 + K7] 

itim + c4 + c8 +b/id[K4 + K8] 

iti m9 + C9 +[I/iW][K9] 

c5 + FhXK51 

C7 + ~/iGll&l 

‘8 + bdK8] 

(D-9-2 1) 

(D-9-22) 

(D-9-23) 

(D-9-24) 

(D-9-25) 

(D-9-26) 

(D-9-27) 

(D-9-28) 

(D-9-29) 

(D-9-30) 

The acceleration and displacement in terms of the velocity variables are: 

Displacement = Velocity / i w ; Acceleration = Velocity (i a) (D-10) 

In matrix notation Equation D-9 can be written: 

Witi) O(ju) z 1 (iti) (D-l 1) 

where A(‘&)) is the impedance matrix, O(jti) is the output column matrix and l(im) is the input 

column matrix. The matrix solution for the outputs is: 

O(i 0) = A-’ (id) I(j d) (D- ‘2) 

where A”(i (3) is the inverse of A(ji3). 
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Equations D- IO and D- I2 allow the outputs to be determined for any time derivative with 

any time derivative as the input, such as acceleration output for a displacement input, etc. From 

this array the output can be determined for one input at a time or for all four inputs (four wheels) 

simultaneously, each having an arbitrary phase angle. 

The impedance matrix A(iO) in Equation D-9 has the following properties: 

I. It is symmetrical 

2. The off-diagonal terms define the cross-coupling between 

the various modes of motion. 

3. The imaginary part of the diagonal terms, when equated to zero 

give the uncoupled, undamped natural frequency for that mode. 

D.3 Statistical Approach and Power Spectral Density 

In Appendix A the statistical classification of surface profiles has been discussed, and 

the power spectral density was defined. In the literature (References 16, 36 and 37) it is shown 

that the power spectral density of the output for a linear system with a single input is the product 

of the square of the system transfer function and the power spectral density of the input. 

PO (~3) = 1 T(jcc>) I2 Pi (&I (D- 13) 

For the vehicle system described by Equations D-9,which has four inputs, the response P.S. D. 

PO(d) is given by: 

4 4 

pow = 

Tz 

Tom (iW) f,k (id Pmk (iu) (D- ‘4) 

m=, = 

where Tom is the transfer function between the output motion in question and the m th . Input, 

TX om is the complex conjugate of Tom and P,k is the cross -spectral density between the m th and 

the kth inputs which becomes the usual P.S.D. for m I k. It was shown in Appendix A that the 
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vertical velocity power spectral density of the lunar surface is “white”, and may be expressed 

by Equation D- 15. 

P, (f) z 4n2 vc (D- ‘5) 

where V is the horizontal velocity of the vehicle and C is a measure of the surface roughness. 

Converting Equation D- I4 from circular frequency (rad/sec) to cps and substituting Equation 

D- ‘5 for the four P. S.D. terms, yield: 

PO (f) q Ton Tzk ‘nk I 
(D- ‘6 ) 

The first four terms in Equation D- 16 are the square of the modulus of the tronsfer function 

between each of the inputs and the output in question, times the P.S.D. of equation D-15. The 

remaining I2 terms of Equation D- I4 have been reduced to six terms in Equation D- I6 by noting 

that this is a summation of complex conjugates which yields twice the real part of each pair. 

Since the surface roughness is represented by a profile which has a “white” velocity P.S.D. 

(Equation D-15), it con be shown (‘6) that the velocity cross-spectral density between any two 

parallel traces is zero. Thus, it can be assumed that the terms in Equation D-16, which contain 

cross-spectral densities between the left and right wheel inputs, are zero. The cross-spectral 

density between in-line following wheels is the Fourier transform of a Dirac delta function which 

is non-zero only for time t q wheel base/velocity. 

With the wheels numbered I, 2, 3 and 4 for left front, right front, left rear and right 

rear respectively and the distance between front and rear wheel given by D = X,’ + X,3 

(See Toble C-2), the cross- spectral density terms in Equation D-16 can be written as: 

P2’ = P4’ = P23 = P43 = 0 (D- 17) 
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and ‘3’ = ‘42 =472CV(cosmf +- + i sin 2Wf (D- ‘8) 

Substituting Equations D- I7 and D- I8 into D- I6 gives: 

4 

PO (f) = 4?r2cv FE I I 
T 2 on 

n= I 

1 
(D- ‘9) 

+ 2(R{ (To, Ti3 + To2 Tz4 ) (~0s 2n f + 
D 1 

+isin2nfv)j 

Equation D- I9 gives the output P. S.D. for one motion of a vehicle with two sets of 

following in-line wheels. If the inputs are all separate parallel profiles (i.e., which are not 

in-line) then Equation D-19 can be further simplified to the form 

PO (f) = 4fi2 CV 2 1 T,,J ’ 

n=l 

(D-20) 

Equation D-20 was used to compute the output P.S. D. for the body bounce, pitch and roll for 

the vehicle model described in Section C-9 of Appendix C. The assumption of independent in- 

puts to all four wheels of this vehicle model is subject to question, but the level of sophistication 

of the model and the limitations imposed by linearity did not seem to warrant the additional compu- 

tation time required to include the coupling terms between the inputs for this demonstration of 

frequency domain analysis. 

D.4 Results of Model Analysis 

The numerical values of Tables C-2 and C-3 in Appendix C were substituted into Equa- 

tion D-9 for analysis. The imaginary components of the diagonal terms in the impedance matrix 

were equated to zero to estimate the natural frequencies. These uncoupled, undamped resonant 

frequencies are listed in Table D-l. 
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Table D-l APPROXIMATE RESONANT FREQUENCIES - ------- - --- 

~___- --. 
Degree of Freedom 

Body vertical 

Frequency 

1.04 cps 

Body roll I. 74 cps 

Body pitch .92 cps 

Wheels vertical 

Fuel cell vertical 

‘0 cps 

‘0 cps 

The resonont frequency of the fuel cell was chosen equal to the wheel frequency to allow the 

fuel cell to damp the body vertical bounce motion of the wheel hop frequency. 

A digito’ computer was used to tabluate the transfer functions from Equation D-9 by 

computing the outputs for each degree of freedom in discrete frequencies between 0.4 and 40 

cps for each input seporotely. Figures D-l through D-4 show the transfer functions between the 

body vertical motion and each of the four wheels and are direct reproductions of digital “print 

out plots. ” The differences between left and right wheel inputs are due to the asymmetrical 

location of the fuel cell. The small difference between front and rear wheel inputs is due to the 

asymmetry of the body center of gravity. 

Since the body is nearly symmetrical, the transfer functions for each of the wheel inputs 

are approximately the same. Therefore, only a representative sample of the results will be presented. 

The transfer functions between the body bounce, roll, and pitch and the left front wheel are shown 

in Figure D-5 in the frequency range of 0.4 to I4 cps, which covers the resonant frequencies of the 

three body motions. The resonant frequencies noted in the transfer functions show good agreement 
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with those listed in Table D-l. Figure D-6 shows the transfer function between body vertical 

and the left front wheel with and without the fuel cell. Also shown in Figure D-6 is the transfer 

function for a solid axle version of the vehicle. The similarity of the three transfer functions 

shows that vehicle suspension geometry does not significantly olter the gross dynamic behavior 

of the vehicle. 

Figure D-7 is a plot of the power spectral density of the body bounce displacement 

calculated from Equation D-20 with a white velocity input to all four wheels. This P.S.D. is 

normalized by making the vertical scale Pd (fi)/ 4n 
2 

CV. It is apparent that most of the vibra- 

tional activity is concentrated in the frequency range near the body resonances. 

In Appendix A it was shown that o Gaussian assumption for the distribution of profile 

height is valid. If a Gaussion random process is applied as an input to a linear system, the out- 

put is olso Gaussian. Since the mean value has been assumed to be zero in this analysis, the 

variance (or its square root; the standard deviation) is sufficient to predict the probability of ex- 

ceeding any given level. The variance is the integral of the P.S.D. on frequency and can be 

computed from Equations D-21, D-22 and D-23 for the displacement, velocity and acceleration 

respectively. w 
2 

“d = 
P, (f) df = 4r2 I I T 2df on 

W 

2 

“v = 

2 
Q z 

a 

I 
W 

Pv (f) df 
0 

/ 

W 

pa 6) = 
0 

/4 

= 4Tr2cv 

i- 
l- 

I I T 
on 

n- - I 
0 

4.n2 cv (275f) 

6 

O” 2 

:n= 4 
lx 

1 

2 
df 

I I T 2df on 

(D-21) 

(D-22) 

(D-23) 

157 



Equations D-2 1, D-22 and D-23 predict that the variance of the vehicle motion is 

directly proportional to the surface roughness coefficient, C, and to the vehicle velocity, V, 

for this linear model with independent input to each wheel. The integrals on the right hand 

side of these equations can be evaluated numerically over the frequency range of interest from 

the digital tabulation of the transfer function. These values specify the essential dynamic 

characteristics of the vehicle model. The effects of vehicle velocity and surface roughness 

can then be easily evaluated in terms of the probobility of exceeding design limitations. 

Figure D-8 is a plot of the probability of vehicle lift-off (percent of the time of 

surface-vehicle separation) versus vehicle speed for two different values of surface roughness. 

The surface roughness coefficients were chosen from Table A-3 as extremes for the lunar sur- 

face segments analyzed in Appendix A. The variance of the vertical c.g. acceleration for the 

independent suspension model with suspended fuel cell was calculated via Equation D-23. Lift- 

off was defined as the percent of the time that the Gaussian distribution of body vertical ac- 

celeration exceeded one lunar g. 

Figure D-9 shows a similar plot for the probability of vehicle pitchover. In this case 

the pitch displacement was calculated from Equation D-21 and the limit was established at that 

point where pitch displacement exceeded the static equilibrium position. The pitch motion was 

chosen since the unusual vehicle geometry gives a higher probability of pitchover than rollover. 

While in the realistic case, the vehicle operator will undoubtedly take the appropriate evasive 

action to avoid pitchover of the vehicle, the estimate of this probability for a straight line 

path at a constant velocity is o meaningful parameter for vehicle configuration comparison. 
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TIME DOMAIN ANALYSIS 

By: C. H. Hoppe 

The model described in Section C.9 of Appendix C was analyzed in two different forms 

using analog computer techniques in order to demonstrate time domain analysis. 

I. By making the assumptions of left to right symmetry for the vehicle and by assuming 

identical inputs to both sides (i.e., correlated inputs to the right and left sides 

of the vehicle), it is possible to collapse the vehicle into a two dimensional model 

having six degrees of freedom. The remaining six degrees are the vehicle body 

vertical translation and pitch rotation modes as well as the vertical translation of 

the wheel and rim masses. Th’ IS model was analyzed on a yielding surface using 

an adaptation of the computer network shown in Figure C-5. 

2. The second form was a seven degree of freedom model which included the bounce, 

pitch and roll motions of the vehicle body and the vertical translation of each of 

the four unsprung masses. This model is described together with an analog computer 

network for simulation in Reference 14. This model was analyzed on a non-yielding 

surface with uncorrelated inputs to the left and right front wheels which were time 

delayed to the rear wheels. Separate uncorrelated random inputs were also used 

to all four wheels of this vehicle model in order to allow a comparison with the 

results of the frequency domain analysis in Appendix D. 

E. 1 Input Considerations 

A Scott random noise generator was used to generate the random velocity white noise 

function necessary for vehicle analysis. The output of this generator is a white noise with 
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Gaussian distribution between the frequencies of 10 cps and lo6 cps. Since the analog computer 

simulation of the vehicle model was programmed for real time, it was necessary to lower the 

frequency ronge of the white noise to accomodate the vehicle body resonances near one cps. 

For this reason, and also to allow multiple inputs for vehicle analysis, the output of the noise 

generator was recorded on a Precision Instruments eight channel f.m, tape recorder. The record- 

ing speed was 37.5 inches per second and by playing back at a speed of .375 inches per second 

a random noise signal was obtained which was white between the frequencies of . 1 and 100 cps. 

The high frequency cut-off wos determined by the limitation of the tape recorder at this play- 

back speed. Four different channels were recorded at different times from the white noise genera- 

tor to allow uncorreloted random noise signals. 

Figure E-I is a strip chart recording of the random noise signal and its integral. The 

integral was obtained by direct analog integration with a low frequency cut-off at .5 cps to 

eliminate drift. Figure E-2 shows a power spectral density plot of the white noise input calcu- 

lated directly on the analog computer using techniques discussed in Reference 12. While this 

integration does not adequately account for long wave length surface slope cha racteristics these 

con be taken into account in the analysis of the output. 

Scaling of the input was achieved by equating the variance of the white noise input 

evaluated on an analog computer with the variance of the vertical velocity of a typical lunar 

profile. The variance of a lunar profile, in temporal frequency, has been shown to be equal 

to(fl-f2)4n2VC= K,, where C is a measure of surface roughness, V is the vehicle 

horizontal velocity and f I and f2 are limits of integration in the frequency domain. For a 

selected surface roughness (C = 3.6 x 10e4 meters) and a vehicle velocity of unity, the variance 

could be evaluated numerically. The gain of the output of the analog determination of the var- 

iance (volts) could be adjusted to be consistent with the scaling (meters/ volt ) previously 
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is noted that the integrated displacement input to the vehicle has a P.S.D. with a slope of -2. 

Figure E-7 shows the output P.S.D. of the vehicle c.g. vertical acceleration. The two peaks 

below one cps are the vehicle body pitch and bounce resonances. A second harmonic of these 

resonances can be seen which is due to the non-linearities of the vehicle system. The resonance 

of the vertical wheel motions can be seen at approximately IO cps in Figure E-7. 

The P. 5. D. and A. P. D. plots in Figures E-2, E-4, E-5, E-6, and E-7 were calculated 

directly on the analog computer. In order to accomplish this calculation the appropriate signals 

were recorded on a magnetic tape loop. The analog circuit for A. P. D. calculation is discussed 

by the author in Reference 12 and the P.S. D. ci rcuit is given in page 102 of Reference 38. 

Figure E-8 shows a comparison of the time traces of vehicle body motions for yielding 

and non-yielding soils. A difference in the equilibrium position of the vehicle bounce motions 

is noted between the yielding and non-yielding surfaces. The yielding surface shows lower fre- 

quency components for both body pitch and bounce motions as compared with the non-yielding 

surface. This is due to the additional compliance of the surface. The effects of the hysteresis 

damping of the soil can also be noted by comparing decay rates of vehicle body motions in 

Figure E-8. 

A preliminary parametric analysis of the suspension spring rates and damping was per- 

formed for this vehicle. The rear suspension spring rate was changed first to a value of one-half 

and then to a value of two times the original rate. The mean squared accelerations for the 

vertical translation and pitch rotation modes of the vehicle body were measured in each case. 

When the rear spring rate was one-half the original value the front spring rate was also lowered 

by the same ratio. Similar variations in suspension damping were made. In this case the front 

damping was doubled at the same time the rear damping was increased. Figures E-9 and E- 10 

show graphically the effects of changing spring rates and damping coefficients for both soft soils 
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and non-yielding soils. From these figures it can be seen that the effects are more pronounced 

when the vehicle is operating on non-yielding soils. In general, the mean squared acceleration 

was less with decreased spring rates and increased damping. The lower limit on spring rate is 

not a function of acceleration of the vehicle but is a function of the static deflection and limit- 

ing motions of the vehicle wheels due to jounce and rebound constraints. As damping is increased 

the mean squared acceleration is lowered to an optimum value of damping and then increases with 

increased damping above this optimum value. 

E.3 Three Dimensional Model Analysis 

A three dimensional seven degree of freedom vehicle model was analyzed using random 

inputs on a non-yielding surface. In this case independent random inputs were used for the 

left and right hand sides of the vehicle and were properly time delayed to the rear wheels. The 

feedback diode on the amplifier used for input in Figure C-5b gives an indication of surface 

vehicle separation. Th is amplifier has approximately a one-half volt output at the time separa- 

tion has occurred due to the diode characteristics. This output can be amplified and shaped to 

allow indication of wheel separation with the surface. It is possible to use hord limiters set at 

the proper voltage to measure the time when one or any combination of wheels has separated 

from the surface. Figure E-l 1 shows time traces of the vehicle body ongular motions and the 

indication of front wheel and all four wheel lift-off for this vehicle model. The lift-off 

measurement is essentially a binory form where lift-off occurs at the lower level in the bottom 

two traces of Figure E-l I and surface contact is represented by the upper level. Figure E-12 

shows the output P.S. D. calculated from the analog output for the vertical displacement of the 

body c.g. This is shown at two different vehicle speeds. The major peak in these plots is the 
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vehicle bounce resonance 0 At two mph this resonance appears at a slightly lower frequency 

than at one mph. This is probably due to the fact that the vehicle suffers separation from the 

surface over a greater amount of the time at this speed. The surface separation will tend to 

broaden the bounce resonance and lower it in frequency due to the non-linear spring effects 

of gravity which acts as the restoring force after separation has occurred. 

The second harmonic of basic body motions noted in Figure E-6 is not apparent in 

Figure E-12 and it would seem that this harmonic is due to the non-linearities of the non- 

yielding surface model. 

In addition to the time delayed inputs a separate independent input was used to excite 

each of the four wheels of this model to allow comparison with the frequency domain results 

of Appendix D. Figure E-13 gives a summary of the results of the four wheeled vehicle with 

indpendent inputs to each of the wheels. The first time that the pitch, angular motion ex- 

ceeded the static equilibrium limit occurred at approximately 2.8 meters per second (six mph). 

The same vehicle model was employed in this instance as in the linear frequency domain approach 

of Appendix D with the major difference that vehicle-surface separation (a non-linearity) was 

allowed in the analog simulation. The restoring force on the vehicle for the analog simulation 

is gravity. For the linear model analysis of Appendix D this restoring force was the vehicle 

wheel and suspension springs in tension. With this non-linearity a surface separation greater 

than 50 percent of the time can be obtained. At the speed where surface separation of all 

four wheels occurred 50 percent of the time, the vehicle suffered the first pitch-over. Table 

E-l is a tabulation of the vertical body acceleration and percent lift-off of all four wheels. 

The percent lift-off is calculated as a probability of exceeding one lunar g from a Gaussian 

distribution determined by the measured standard deviation of vertical body acceleration and 

is also directly measured from the analog simulation. 
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Table E-l shows good agreement between the two measurements at about 

o = 1 lunar g0 For values below this level the analog simulation gives less lift-off 

than the theoretical prediction and above this value the analog simulation gives a greater 

percent of vehicle-surface separation. 

Table E-l VERTICAL BODY ACCELERATION AND % LIFT-OFF 

Speed 

( mph) 

. I 

“Measured” Standard % of time Lift-off 

Deviation of Vertical Theoretical Prediction % of time Lift-off 
Body Acceleration from Lunar g . “Measured” 

(L unar (See Appendix D) -. g’s) Analog Simulation 

.63 5.6 0 

.2 .66 6.4 0.2 

.3 .69 7. I 1.0 

.4 .73 8.5 1.6 

.5 .82 11.2 6.0 

.6 .90 13.4 9.6 

.7 .80 10.4 9.0 

.8 .85 12. I 12.5 

.9 .90 13.4 15.5 

1.0 1.00 15.9 21.1 

2.0 I. 03 16.6 26.5 

4.0 I. 32 22.4 43.5 

6.0 1.52 25.5 52.4 
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E.4 Summary of Results of Non-Linear Analysis 

In this appendix a vehicle model which included a non-linear yielding surface was 

investigated in contrast to the linear model discussed in Appendix D. In both cases Iineariza- 

tion of rotational motion (small angle assumptions) has been used; the non-linearities in this 

analysis included the freedom of the wheels to lift-off the surface, and a non-linear spring rate 

representing the surface deformation. Comparing the results from these two studies show the 

following: both models adequately predict resonances of the various motions, predictions of lift- 

off agree fairly well at those speeds for which the body vertical acceleration (standard deviation) 

is near one lunar g, predictions of limiting speed at which pitch-over is likely to occur show some 

agreement. For the non-linear model the first pitch-over was detected at a speed of approximately 

six miles per hour, while the linear analysis showed the probability of pitch-over occurring was 

about 0.01 percent at this speed. These comparisons are based on a non-yielding surface. It 

has been shown that the motion of the body is reduced when traversing a yielding surface, so 

the limiting conditions predicted above are conservative estimates for yielding surfaces. lt 

should also be kept in mind that linearity of angular motion has been assumed, so that although 

the estimates of exceeding limiting conditions are not precise they do represent “ball park” 

values. 
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